
Inria Grenoble-Alpes,

Online Learning Lecture Notes

Pierre Gaillard
2023



Abstract

These notes explore fundamental ideas in online learning, where data are processed in real-time, and
algorithms are updated dynamically. Topics include online linear and convex optimization, as well as
multi-armed bandits. The main algorithms in the field will be introduced, and we will delve into regret
minimization concepts for theoretical analysis. Online learning algorithms play a central role in recent
advancements in reinforcement learning.

Useful information
– Pierre Gaillard (INRIA Grenoble-Alpes)
– Email: pierre.gaillard@inria.fr
– Relevant references: Cesa-Bianchi and Lugosi [2006], Shalev-Shwartz et al. [2012], Hazan et al.

[2016], Lattimore and Szepesvári [2020]
– Content of the class: mostly theoretical (algorithms and proofs), sequential learning with adver-

sarial data, stochastic bandits, adversarial bandits
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1 Introduction

1 Introduction

In many applications, the data set is not available from the beginning to learn a model but it is observed
sequentially as a flow of data. Furthermore, the environment may be so complex that it is unfeasible to
choose a comprehensive model and use classical statistical theory and optimization. A classic example
is the spam detection which can be seen as a game between spammer and spam filters. Each trying to
fool the other one. Another example, is the prediction of processes that depend on human behaviors
such as the electricity consumption. These problems are often not adversarial games but cannot be
modeled easily and are surely not i.i.d. There is a necessity to take a robust approach by using a method
that learns as ones goes along, learning from experiences as more aspects of the data and the problem
are observed. This is the goal of online learning. The curious reader can know more about online
learning in the books Cesa-Bianchi and Lugosi [2006], Hazan et al. [2016], Shalev-Shwartz et al. [2012].

1.1 Setting of online learning

In online learning, a player sequentially makes decisions based on past observations. After committing
the decision, the player suffers a loss (or receives a reward depending on the problem). Every possible
decision incurs a (possibly different) loss. The losses are unknown to the player beforehand an may be
arbitrarily chosen by some adversary. More formally, an online learning problem can be formalized as
in Figure 1.1.

At each time step 𝑡 = 1, . . . ,𝑇
– the player observes a context 𝑥𝑡 ∈ X (optional step)
– the player chooses an action 𝜃𝑡 ∈ Θ (compact decision/parameter set);
– the environment chooses a loss function ℓ𝑡 : Θ→ R;
– the player suffers loss ℓ𝑡 (𝜃𝑡 ) and observes

– the losses of every actions: ℓ𝑡 (𝜃 ) for all 𝜃 ∈ Θ → full-information feedback
– the loss of the chosen action only: ℓ𝑡 (𝜃𝑡 ) → bandit feedback.

The goal of the player is to minimize his cumulative loss:

𝐿̂𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) .

Figure 1.1: Setting of an online learning problem/online convex optimization

Example 1.1 (Multi-armed bandit). In 𝐾-armed bandit, the decision set are 𝐾 actions (or arms) Θ =

{1, . . . , 𝐾} and the player only observes the performance of the chosen action (bandit feedback). In this
problem, there is an exploration-exploitation trade-off: the player wants to select the best arm as often as
possible but he also needs to explore all arms to estimate their performance.

This problem takes his name from slot machines (also known as one-armed bandits because they were
originally operated by one lever on the side of the machine) in which some player explores several slot
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machines and tries to maximize his cumulative gain (or more likely minimize his loss!).

Originally, multi-armed bandit setting was introduced by Thompson in 1933 and motivated by clinical
trials. For the 𝑡-th patient in some clinical study, one needs to choose the treatment to assign to this patient
and observe the response. The goal is to maximize the number of patients healed during the study.

Nowadays, multi-armed bandit is motivated by many applications coming from internet (recommender
systems, online advertisements,. . . ). We will see more on multi-armed bandit in next lectures.

Example 1.2 (Prediction with expert advice). In prediction with expert advice, there is some sequence of
observations 𝑦1, . . . , 𝑦𝑇 ∈ [0, 1] to be predicted step by step with the help of expert forecasts. The setting
can be formalized as follows: at each time step 𝑡 ≥ 1

– the environment reveals experts forecasts 𝑥𝑡 (𝑘) for 𝑘 = 1, . . . , 𝑑
– the player chooses a weight vector 𝑝𝑡 ∈ Δ𝑑

def
= {𝑝 ∈ [0, 1]𝑑 :

∑𝑑
𝑘=1 𝑝𝑘 = 1}

(here 𝜃𝑡 is denoted 𝑝𝑡 and Θ = Δ𝑑 )
– the player forecasts 𝑦𝑡 =

∑𝑑
𝑘=1 𝑝𝑡 (𝑘)𝑥𝑡 (𝑘)

– the environment reveals 𝑦𝑡 ∈ [0, 1] and the player suffers loss ℓ𝑡 (𝑝𝑡 ) = ℓ (𝑦𝑡 , 𝑦𝑡 ) where ℓ : [0, 1]2 →
[0, 1] is a loss function.

Considering Θ := Δ𝑑 and 𝜃𝑡 := 𝑝𝑡 , this setting can be recovered by the online learning setting of Figure 1.1.
The inputs correspond to the expert advice 𝑥𝑡 (𝑘) that are often revealed before the learner makes his
decision 𝑝𝑡 .

Player’s performance is then measured via a loss function ℓ𝑡 (𝑝𝑡 ) = ℓ (𝑦𝑡 , 𝑦𝑡 ) which measures the distance
between the prediction𝑦𝑡 and the output𝑦𝑡 . Typical loss functions are the squared loss ℓ (𝑦𝑡 , 𝑦𝑡 ) = (𝑦𝑡 −𝑦𝑡 )2,
the absolute loss ℓ (𝑦𝑡 , 𝑦𝑡 ) = |𝑦𝑡 − 𝑦𝑡 | or the absolute percentage of error ℓ (𝑦𝑡 , 𝑦𝑡 ) = |𝑦𝑡 − 𝑦𝑡 |/|𝑦𝑡 |. All these
loss functions are convex, which will play an important role in the analysis.

1.2 How to measure the performance: the regret

Of course, if the environment chooses large losses ℓ𝑡 (𝑥) for all decisions 𝜃 ∈ Θ, it is impossible for
the player to ensure small cumulative loss. Therefore, one needs a relative criterion: the regret of the
player is the difference between the cumulative loss he incurred and that of the best fixed decision in
hindsight.

Definition 1.1 Regret
The regret of the player with respect to a fixed parameter 𝜃 ∗ ∈ Θ after 𝑇 time steps is

𝑅𝑇 (𝜃 ∗)
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗) .

The regret (or uniform regret) is defined as 𝑅𝑇
def
= sup𝜃 ∗∈Θ 𝑅𝑇 (𝜃 ∗).

We have some bias-variance decomposition:
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) = inf
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 )︸                ︷︷                ︸
Approximation error = how good the possible actions are.

+ 𝑅𝑇︸  ︷︷  ︸
Sequential estimation error of the best action
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We will focus on the regret in these lectures. The goal of the player is to ensure a sublinear regret
𝑅𝑇 = 𝑜 (𝑇 ) as 𝑇 → ∞ and this for any possible sequence of losses ℓ1, . . . , ℓ𝑇 . In this case, the average
performance of the player will approach on the long term the one of the best decision.

Remarks Let us makes some remarks:

• Except in the stochastic bandit part, we will not make any random assumption on the process
generating the losses ℓ𝑡 . The latter are deterministic and may be chosen by some adversary.
Typically, the problem can be seen as a game between the player who aims at optimizing with
respect to 𝜃1, . . . , 𝜃𝑇 against an environment who aims at mazimizing with respect to ℓ𝑡 , . . . , ℓ𝑇
and 𝜃 ∗. Player’s goal is to approach the quantity:

inf
𝜃1

sup
ℓ1

inf
𝜃2

sup
ℓ2
. . . inf

𝜃𝑇

sup
ℓ𝑇

sup
𝜃 ∗∈Θ

𝑅𝑇 (𝜃 ∗) .

• Note that the loss functions ℓ𝑡 depend on the round 𝑡 . This may be caused by many phenomena.
We provide here some possible reasons. This may be because

– of some observation to be predicted if ℓ𝑡 (𝑥) = ℓ (𝑥,𝑦𝑡 ). For instance, if the goal is to predict
the evolution of the temperature 𝑦1, . . . , 𝑦𝑇 , the latter changes over time and a prediction 𝑥
is evaluated with ℓ𝑡 (𝑥) = (𝑥 − 𝑦𝑡 )2.

– the environment is stochastic and the variation over time 𝑡 models some noise effect.
– of a changing environment. For instance, if the player is playing a game against some

adversary that evolves and adapts to its strategy. A typical example is the case of spam
detections. If the player tries to detect spams, while some spammers (the environment) try
at the same time to fool the player with new spam strategies.

Exercise 1.1. Instead considering the regret with respect to a fixed 𝜃 ∗ ∈ Θ, one would be tempted to
minimize the quantity

𝑅∗𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

inf
𝜃 ∈Θ

ℓ𝑡 (𝜃 )

where the infimum is inside the sum. Show that the environment can ensure 𝑅∗
𝑇
to be linear in𝑇 by choosing

properly the loss functions ℓ𝑡 .
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2 Online Linear Optimization

2 Online Linear Optimization

In this part, we assume that Θ ⊂ R𝑑 and that the loss functions ℓ𝑡 : Θ→ R are linear

∀𝜃 ∈ Θ, ℓ𝑡 (𝜃 ) = ⟨𝜃, 𝑔𝑡 ⟩ (2.1)

where 𝑔𝑡 ∈ R𝑑 is a loss vector chosen by the environment at round 𝑡 and which is revealed to the player
at the end of the round. This setting might seem restrictive but we will see latter that it can easily be
generalized to more complex frameworks.

2.1 Simplex decision set

Here, we start by presenting an algorithm when the decision set Θ is the 𝑑-dimensional simplex

Δ𝑑
def
=

{
𝑝 ∈ [0, 1]𝑑 :

𝑑∑︁
𝑘=1

𝑝𝑘 = 1
}
.

Since the decisions 𝜃𝑡 are probability distributions over [𝑑] def
= {1, . . . , 𝑑}, in this part we will denote

them by 𝑝𝑡 instead of 𝜃𝑡 . The simplex is a versatile decision set that includes distributions, enables
weighted averages for method combination, and can represent any convex hull, making it powerful.

2.1.1 The exponentially weighed average forecaster

At round 𝑡 the player needs to choose a weight vector 𝑝𝑡 ∈ Δ𝑑 . The question is how to choose it?
The idea is to give more weight to actions that performed well in the past. But we should not give all
the weight to the current best action, otherwise it would not work (see exercises). The exponentially
weighted average forecaster (EWA) also called Hedge performs this trade-off by choosing a weight that
decreases exponentially fast with the past errors.

Parameter: 𝜂 > 0, 𝑝1 ∈ Δ𝑑
For 𝑡 = 1, . . . ,𝑇

– select 𝑝𝑡 ; incur loss ℓ𝑡 (𝑝𝑡 ) = ⟨𝑝𝑡 , 𝑔𝑡 ⟩ and observe 𝑔𝑡 ∈ R𝑑 ;
– update for all 𝑘 ∈ {1, . . . , 𝑑}

𝑝𝑡+1(𝑘) =
𝑝1(𝑘)𝑒−𝜂

∑𝑡
𝑠=1 𝑔𝑠 (𝑘 )∑𝑑

𝑗=1 𝑝1( 𝑗)𝑒−𝜂
∑𝑡

𝑠=1 𝑔𝑠 ( 𝑗 )
.

Algorithm 2.1: The Exponentially weighted average forecaster (EWA)

Exercise 2.1. Consider the strategy, called “Follow The Leader” (FTL) that puts all the mass on the best
action so far:

𝑝𝑡 ∈ arg min
𝑝∈Θ

𝑡−1∑︁
𝑠=1

ℓ𝑠 (𝑝) . (FTL)
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1. Show that 𝑝𝑡 (𝑘) > 0 implies that 𝑘 ∈ arg min𝑗
∑𝑡−1
𝑠=1 𝑔𝑠 ( 𝑗)

2. Show that the regret of FTL might be linear: i.e., there exists a sequence 𝑔1, . . . , 𝑔𝑇 ∈ [−1, 1]𝑑 such
that 𝑅𝑇 ≥ (1 − 1/𝑑)𝑇 .

The following theorem proves that EWA, which is a smoothed version of FTL (it performs a soft-max),
achieves sublinear regret.

Theorem 2.1
Let 𝑇 ≥ 1. For all sequences of loss vectors (𝑔𝑡 ) ∈ R𝑑 with ∥𝑔𝑡 ∥∞ ≤ 𝐺∞, if 𝜂 ≤ 𝐺−1

∞ , and 𝑝1 =

(1/𝑑, . . . , 1/𝑑), EWA achieves the regret upper bound

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝𝑡 ) − min
𝑝∈Δ𝑑

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝) ≤ 𝜂
𝑇∑︁
𝑡=1

𝑑∑︁
𝑘=1

𝑝𝑡 (𝑘)𝑔𝑡 (𝑘)2 +
log𝑑
𝜂

, (2.2)

where we recall ℓ𝑡 : 𝑝 ∈ Δ𝑑 ↦→ ⟨𝑝,𝑔𝑡 ⟩. Therefore, for the choice 𝜂 = 1
𝐺∞

√︃
log𝑑
𝑇

, EWA satisfies the regret

bound 𝑅𝑇 ≤ 2𝐺∞
√︁
𝑇 log𝑑 .

This regret bound is optimal up to multiplicative constants (see Cesa-Bianchi and Lugosi [2006]).

Proof. First, we remark that if the losses are linear ℓ𝑡 (𝑝) = ⟨𝑝,𝑔𝑡 ⟩, then

min
𝑝∈Δ𝑑

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝) = min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) .

Indeed, for any 𝑝 ∈ Δ𝑑 ,

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝) =
𝑇∑︁
𝑡=1
⟨𝑝,𝑔𝑡 ⟩ =

𝑑∑︁
𝑘=1

𝑝 (𝑘)
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) ≥
𝑑∑︁
𝑘=1

𝑝 (𝑘) min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) = min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) .

Therefore

𝑅𝑇 =

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ − min

1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) .

We denote𝑊𝑡 ( 𝑗) = 𝑒−𝜂
∑𝑡

𝑠=1 𝑔𝑡 ( 𝑗 ) and𝑊𝑡 =
∑𝑑
𝑗=1𝑊𝑡 ( 𝑗). The proof will consist in upper-bounding and

lower-bounding𝑊𝑇 . We have

𝑊𝑡 =

𝑑∑︁
𝑗=1
𝑊𝑡−1( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 ) ← 𝑊

( 𝑗 )
𝑡 =𝑊𝑡−1( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 )

= 𝑊𝑡−1

𝑑∑︁
𝑗=1

𝑊𝑡−1( 𝑗)
𝑊𝑡−1

𝑒−𝜂𝑔𝑡 ( 𝑗 )

= 𝑊𝑡−1

𝑑∑︁
𝑗=1

𝑝𝑡 ( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 ) ← 𝑝𝑡 ( 𝑗) =
𝑒−𝜂

∑𝑡−1
𝑠=1 𝑔𝑠 ( 𝑗 )∑𝑑

𝑘=1 𝑒
−𝜂∑𝑡−1

𝑠=1 𝑔𝑠 (𝑘 )
=
𝑊𝑡−1( 𝑗)
𝑊𝑡−1

≤ 𝑊𝑡−1

𝑑∑︁
𝑗=1

𝑝𝑡 ( 𝑗)
(
1 − 𝜂𝑔𝑡 ( 𝑗) + 𝜂2𝑔𝑡 ( 𝑗)2

)
← 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2 for 𝑥 ≤ 1
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= 𝑊𝑡−1(1 − 𝜂⟨𝑝𝑡 , 𝑔𝑡 ⟩ + 𝜂2⟨𝑝𝑡 , 𝑔2
𝑡 ⟩) ,

where we used in the inequality −𝜂𝑔𝑡 ( 𝑗) ≤ −𝑔𝑡 ( 𝑗)/𝐺∞ ≤ 1 and where we denote 𝑔𝑡 = (𝑔𝑡 (1), . . . , 𝑔𝑡 (𝑑)),
𝑔2
𝑡 =

(
𝑔𝑡 (1)2, . . . , 𝑔𝑡 (𝑑)2

)
and 𝑝𝑡 = (𝑝𝑡 (1), . . . , 𝑝𝑡 (𝑑)). Now, using 1 + 𝑥 ≤ 𝑒𝑥 , we get:

𝑊𝑡 ≤𝑊𝑡−1 exp
(
− 𝜂⟨𝑝𝑡 , 𝑔𝑡 ⟩ + 𝜂2⟨𝑝𝑡 , 𝑔2

𝑡 ⟩
)
.

By induction on 𝑡 = 1, . . . ,𝑇 , this yields using𝑊0 = 𝑑

𝑊𝑇 ≤ 𝑑 exp
(
− 𝜂

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ + 𝜂2

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔2

𝑡 ⟩
)
. (2.3)

On the other hand, upper-bounding the maximum with the sum,

exp
(
− 𝜂 min

𝑗∈[𝑑 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
)
≤

𝑑∑︁
𝑗=1

exp
(
− 𝜂

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
)
≤𝑊𝑇 .

Combining the above inequality with Inequality (2.3) and taking the log, we get

−𝜂 min
𝑗∈[𝑑 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤ −𝜂
𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ + 𝜂2

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔2

𝑡 ⟩ + log𝑑 . (2.4)

Dividing by 𝜂 and reorganizing the terms proves the first inequality:

𝑅𝑇 =

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ − min

1≤ 𝑗≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤ 𝜂
𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔2

𝑡 ⟩ +
log𝑑
𝜂

Optimizing 𝜂 and upper-bounding ⟨𝑝𝑡 , 𝑔2
𝑡 ⟩ ≤ 𝐺2

∞ concludes the second inequality. □

Anytime algorithm (the doubling trick) The previous algorithm EWA depends on a parameter
𝜂 > 0 that needs to be optimized according to 𝑑 , 𝐺∞, and 𝑇 . For instance, for EWA using the value

𝜂 =
1
𝐺∞

√︂
log𝑑
𝑇

.

the bound of Theorem 2.1 is only valid for horizon 𝑇 . However, the learner might not know 𝐺∞ or the
time horizon 𝑇 in advance and one might want an algorithm with guarantees valid simultaneously for
all 𝑇 ≥ 1. We can avoid the assumption that 𝑇 is known in advance, at the cost of a constant factor, by
using the so-called doubling trick. The general idea is the following. Whenever we reach a time step 𝑡
which is a power of 2, we restart the algorithm (forgetting all the information gained in the past) setting
𝜂 to 𝐺−1

∞
√︁

log𝑑/𝑡 . Let us denote EWA-doubling this algorithm.

Theorem 2.2 Anytime bound on the regret
For all 𝑇 ≥ 1, the pseudo-regret of EWA-doubling is then upper-bounded as:

𝑅𝑇 ≤ 7𝐺∞
√︁
𝑇 log𝑑 .
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The same trick can be used to turn most online algorithms into anytime algorithms (even in more
general settings: bandits, general loss,. . . ). We can use the doubling trick whenever we have an algorithm
with a regret of order O(𝑇𝛼 ) for some 𝛼 > 0 with a known horizon 𝑇 to turn it into an algorithm with
a regret O(𝑇𝛼 ) for all 𝑇 ≥ 1.

Another solution is to use time-varying parameters 𝜂𝑡 replacing 𝑇 with the current value of 𝑡 . The
analysis is however less straightforward.

Exercise 2.2. Prove a regret bound for the time-varying choice 𝜂𝑡 =
√︁

log𝑑/(1 +∑𝑡
𝑠=1 ∥𝑔𝑡 ∥2∞) in EWA.

Proof of Theorem 2.2. For simplicity we assume 𝑇 = 2𝑀+1 − 1. The regret of EWA-doubling is then
upper-bounded as:

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝𝑡 ) − min
𝑝∈Δ𝑑

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝)

≤
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝𝑡 ) −
𝑀∑︁
𝑚=0

min
𝑝∈Δ𝑑

2𝑚+1−1∑︁
𝑡=2𝑚

ℓ𝑡 (𝑝)

=

𝑀∑︁
𝑚=0

2𝑚+1−1∑︁
𝑡=2𝑚

ℓ𝑡 (𝑝𝑡 ) − min
𝑝∈Δ𝑑

2𝑚+1−1∑︁
𝑡=2𝑚

ℓ𝑡 (𝑝)︸                                   ︷︷                                   ︸
𝑅𝑚

.

Now, we remark that each term 𝑅𝑚 corresponds to the expected regret of an instance of EWA over the
2𝑚 rounds 𝑡 = 2𝑚, . . . , 2𝑚+1 − 1 and run with the optimal parameter 𝜂 =

√︁
log𝑑/2𝑚 . Therefore, using

Theorem 2.1, we get 𝑅𝑚 ≤ 2
√︁

2𝑚 log𝑑 , which yields:

𝑅𝑇 ≤
𝑀∑︁
𝑚=0

2𝐺∞
√︁

2𝑚 log𝑑 ≤ 2(1 +
√

2)𝐺∞
√︃

2𝑀+1 log𝑑 ≤ 7𝐺∞
√︁
𝑇 log𝑑 .

□

Improvement for small losses The first inequality in Theorem 2.1 is sometimes called improvement
for small losses when losses are non-negative. Let’s define 𝐿̂𝑇

def
=

∑𝑇
𝑡=1 ℓ𝑡 (𝑝𝑡 ) the loss of the algorithm

and 𝐿∗
𝑇

def
= min𝑝∈Δ𝑑

∑𝑇
𝑡=1 ℓ𝑡 (𝑝) the optimal loss. Then, optimizing in 𝜂 =

(
log(𝑑)/∑𝑇

𝑡=1⟨𝑝𝑡 , 𝑔2
𝑡 ⟩

)1/2, the
regret is upper-bounded by

𝑅𝑇
def
= 𝐿̂𝑇 − 𝐿∗𝑇 ≤

log𝑑
𝜂
+ 𝜂

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔2

𝑡 ⟩ = 2
√︃
(log𝑑)∑𝑇

𝑡=1⟨𝑝𝑡 , 𝑔2
𝑡 ⟩ ≤ 2

√︃
(log𝑑)𝐺∞𝐿̂𝑇 .

Therefore, using that 𝑥2 ≤ 𝑎 + 𝑐𝑥 implies 𝑥 ≤
√
𝑎 + 𝑐 when 𝑎, 𝑐 ≥ 0, we get with 𝑥 =

√︃
𝐿̂𝑇 that√︃

𝐿̂𝑇 ≤
√︃
𝐿∗
𝑇
+ 2

√︁
𝐺∞ log𝑑 ,

which yields
𝑅𝑇 ≤ 4

√︃
𝐺∞ log(𝑑)𝐿∗

𝑇
+ 4𝐺∞ log𝑑 ,

which is small whenever the optimal loss 𝐿∗
𝑇
is small.
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2.1.2 Application to prediction with expert advice

The preceding section considers linear loss functions. Yet, it can yield non-trivial regret bounds for
general convex losses. We consider here an application to the setting of prediction with expert advice
detailed in Example 1.2. The goal is to minimize the regret with respect to the best expert

𝑅
expert
𝑇

def
=

𝑇∑︁
𝑡=1

ℓ (𝑦𝑡 , 𝑦𝑡 ) − min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

ℓ (𝑥𝑡 (𝑘), 𝑦𝑡 ) ,

where 𝑦𝑡 = ⟨𝑝𝑡 , 𝑥𝑡 ⟩ are the predictions of the algorithm and 𝑦𝑡 the observations to be predicted
sequentially.

Convex loss function We state bellow a corrolary to Theorem 2.1 when the loss functions ℓ (·, ·) are
convex in their first argument.

Corollary 2.3 Regret of EWA for prediction with expert advice and convex loss
Let 𝑇 ≥ 1, 𝐵 > 0. Assume that the loss function ℓ : (𝑥,𝑦) ∈ R × R ↦→ R is convex and takes values in
[−𝐵, 𝐵]. Then, EWA applied with the vector vectors 𝑔𝑡 =

(
ℓ (𝑥𝑡 (1), 𝑦𝑡 ), . . . , ℓ (𝑥𝑡 (𝑑), 𝑦𝑡 )

)
∈ [−𝐵, 𝐵]𝑑 has

a regret upper-bounded by
𝑅
expert
𝑇

≤ 2𝐵
√︁
𝑇 log𝑑

where 𝑦𝑡 = ⟨𝑝𝑡 , 𝑥𝑡 ⟩ and were 𝜂 > 0 is well-tuned.

Therefore, the average error of the algorithm will converge to the average error of the best expert. This
is the case for the square loss, the absolute loss or the absolute percentage of error.

Proof. It suffices to remark that by convexity of ℓ (·, ·) in its first argument

𝑅
expert
𝑇

=

𝑇∑︁
𝑡=1

ℓ (⟨𝑝𝑡 , 𝑥𝑡 ⟩, 𝑦𝑡 ) − min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

ℓ (𝑥𝑡 (𝑘), 𝑦𝑡 )

≤
𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ − min

1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘)
def
= 𝑅𝑇 .

The result is then obtained by Theorem 2.1. □

Exp-concave loss function Here, we show that a faster rate can be obtained (with EWA) if the loss
function are exp-concave.

Definition 2.1 𝜂-exp-concavity
For 𝜂 ∈ R, a function 𝑓 is said to be 𝜂-exp-concave if 𝑥 ↦→ 𝑒−𝜂𝑓 (𝑥 ) is concave.

Exp-concavity is stronger than convexity but weaker than strong convexity. Indeed, exp-concave
functions are convex because − log is convex and decreasing. Furthermore, any 𝜂-exp-concave function
is also 𝜂′-exp-concave for 0 ≤ 𝜂′ ≤ 𝜂.

In prediction with expert advice, if the loss are generated from a fixed loss function ℓ𝑡 (𝑝) = ℓ (⟨𝑝, 𝑥𝑡 ⟩, 𝑦𝑡 ),
then ℓ𝑡 are 𝜂-expconcave if 𝑦 ↦→ ℓ (𝑦,𝑦𝑡 ) are 𝜂-exp-concave for all 𝑦𝑡 . We can compute 𝜂 for some
common loss functions:
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– the squared loss: ℓ : (𝑦,𝑦) ∈ [0, 1]2 ↦→ (𝑦 − 𝑦)2, then ℓ𝑡 are 1/2-exp-concave. Indeed, let 𝑦 ∈ [0, 1]
and denote𝐺 : 𝑦 ↦→ exp

(
−𝜂 (𝑦 −𝑦)2

)
. Then,𝐺 ′′(𝑦) = 𝐺 (𝑦)

(
4𝜂2(𝑦 −𝑦)2 − 2𝜂). Thus𝐺 is concave

if and only if (𝑦 − 𝑦)2 ≤ 1/(2𝜂) which is satisfied for 𝜂 = 1/2. This is also the case in higher
dimensions with ℓ (𝑦,𝑦) = ∥𝑦 − 𝑦∥2. If the observations and prediction 𝑦,𝑦 ∈ [0, 𝐵], then the ℓ𝑡
are 1/(2𝐵2)-exp-concave

– the relative entropy (or Kullback–Leibler divergence): ℓ : (𝑦,𝑦) ∈ [0, 1]2 ↦→ 𝑦 log(𝑦/𝑦) − (1 −
𝑦) log((1 − 𝑦)/(1 − 𝑦)). Then the functions ℓ𝑡 are 1-exp-concave. This loss can for instance used
for density estimation of the sequence 𝑦1, . . . , 𝑦𝑇 .

– the linear loss ℓ (𝑦,𝑦) = 𝑦 ·𝑦, the absolute loss ℓ (𝑦,𝑦) = |𝑦 −𝑦 | or the absolute percentage of error
are however not 𝜂-exp-concave for any 𝜂 > 0.

Corollary 2.4 Regret of EWA for prediction with expert advice and exp-concave loss
In the setting of prediction with expert advice, if the loss functions ℓ (·, 𝑦𝑡 ) are 𝜂-exp-concave for all
𝑦𝑡 , then EWA run with vectors 𝑔𝑡 =

(
ℓ (𝑥𝑡 (1), 𝑦𝑡 ), . . . , ℓ (𝑥𝑡 (𝑑), 𝑦𝑡 )

)
∈ R𝑑 with parameter 𝜂 > 0 and

𝑝1 = (1/𝑑, . . . , 1/𝑑) satisfies
𝑅
expert
𝑇

≤ log𝑑
𝜂

,

for all 𝑇 ≥ 1.

The worst-case regret does not increase with 𝑇 but grows logarithmically in the dimension 𝑑 .

Proof. The proof is similar to the original proof of EWA. We define𝑊𝑡 (𝑖) = 𝑒−𝜂
∑𝑡

𝑠=1 𝑔𝑠 (𝑖 ) and𝑊𝑡 =∑𝑑
𝑖=1𝑊𝑡 (𝑖). We have

𝑊𝑡 =

𝑁∑︁
𝑗=1
𝑊𝑡−1( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 ) ← 𝑊𝑡 ( 𝑗) =𝑊𝑡−1( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 )

= 𝑊𝑡−1

𝑁∑︁
𝑗=1

𝑊𝑡−1( 𝑗)
𝑊𝑡−1

𝑒−𝜂𝑔𝑡 ( 𝑗 )

= 𝑊𝑡−1

𝑁∑︁
𝑗=1

𝑝𝑡 ( 𝑗)𝑒−𝜂𝑔𝑡 ( 𝑗 ) ← 𝑝𝑡 ( 𝑗) =
𝑒−𝜂

∑𝑡−1
𝑠=1 𝑔𝑠 ( 𝑗 )∑𝑁

𝑘=1 𝑒
−𝜂∑𝑡−1

𝑠=1 𝑔𝑠 (𝑘 )
=
𝑊𝑡−1( 𝑗)
𝑊𝑡−1

≤ 𝑊𝑡−1 exp
(
− 𝜂ℓ (⟨𝑝𝑡 , 𝑥𝑡 ⟩, 𝑦𝑡 )

)
← 𝜂-exp-concavity

Now, by induction on 𝑡 = 1, . . . ,𝑇 , this yields using𝑊0 = 𝑑

𝑊𝑇 ≤ 𝑑 exp
(
−𝜂

𝑇∑︁
𝑡=1

ℓ (𝑦𝑡 , 𝑦𝑡 )
)
. (2.5)

On the other hand, upper-bounding the maximum with the sum,

exp
(
− 𝜂 min

𝑗∈[𝑑 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
)
≤

𝑑∑︁
𝑗=1

exp
(
− 𝜂

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
)
≤𝑊𝑇 .

Combining the above inequality with Inequality (2.5) and taking the log concludes the proof. □
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2.1.3 Non-convexity: Linearizing the loss through randomization

Setting: Θ finite, non-convex loss functions ℓ𝑡 : Θ→ [−𝐵, 𝐵].

In this section, we consider a finite set of decision Θ = {1, . . . , 𝑑} and we assume that the player is
restricted to play an action in Θ. In other words, the player cannot play convex combinations of
the actions as it was done for prediction with expert advice. For instance, we may want to build a
recommender system to recommend movies to customers. The loss function are arbitrary bounded loss
functions ℓ𝑡 : Θ→ [−𝐵, 𝐵].

Need of a random strategy The following proposition shows that the choice 𝜃𝑡 cannot be determin-
istic in this setting. Otherwise, the adversary may fool the player by taking ℓ𝑡 depending on 𝜃𝑡 .

Proposition 2.5
Any deterministic algorithm may incur a linear regret. In other words, we can find some sequence of
losses ℓ𝑡 such that 𝑅𝑇 ≳ 𝑇 .

Proof. Since 𝜃𝑡 is deterministic, the loss function ℓ𝑡 can depend on 𝜃𝑡 . We then choose ℓ𝑡 (𝜃𝑡 ) = 1
and ℓ𝑡 (𝜃 ) = 0 for 𝜃 ≠ 𝜃𝑡 . Then one of the chosen actions was picked less then 𝑇 /𝑑 times so that
max1≤𝑘≤𝑑 ℓ𝑡 (𝑘) ≤ 𝑇 /𝑑 . Therefore, 𝑅𝑇 ≥ (1 − 1/𝑑)𝑇 . □

From the above proposition, we see that the strategy of the learner needs to be random. Therefore,
instead of choosing an action in {1, . . . , 𝑑}, the player chooses a probability distribution 𝑝𝑡 ∈ Δ𝑑 := {𝑝 ∈
[0, 1]𝑑 :

∑
𝑘 𝑝𝑘 = 1} and draws 𝜃𝑡 ∼ 𝑝𝑡 . And we recover the setting with actions played in the simplex

Δ𝑑 .

A random regret The regret 𝑅𝑇 will be here a random quantity that depends on the randomness of
the algorithm (and eventually of the data). We will thus focus on upper-bounding the regret:

– with high-probability: 𝑅𝑇 ≤ 𝜀 with probability at least 1 − 𝛿 ;
– in expectation: E[𝑅𝑇 ] ≤ 𝜀.

From high-probability bound to expected bound. Note that since the losses are bounded in [0, 1] a bound
in high probability entails a bound in expectation. If 𝑅𝑇 ≤ 𝜀 with probability at least 1 − 𝛿 , then

E[𝑅𝑇 ] ≤ E
[
𝑅𝑇 |𝑅𝑇 ≤ 𝜀

]
P(𝑅𝑇 ≤ 𝜀) + E

[
𝑅𝑇 |𝑅𝑇 ≥ 𝜀

]
P(𝑅𝑇 ≥ 𝜀) ≤ 𝜀 +𝑇𝛿 . (2.6)

Another useful (and often better) tool to transform a high-probability bound into a bound in expectation
is the inequality E[𝑋 ] =

∫ ∞
0 P(𝑋 ≥ 𝜀)𝑑𝜀 for nonnegative random variable 𝑋 .

From expected bound to high-probability bound. On the other hand, since the losses are bounded, using
Hoeffding’s inequality a bound in expectation entails a bound in high probability at the cost of an
additive term of order

√︁
𝑇 log(1/𝛿) in the regret.

Proposition 2.6
Let Θ be finite of cardinal 𝑑 and ℓ1, . . . , ℓ𝑇 : Θ → [−𝐵, 𝐵] be an arbirary sequence of losses. Then,

14



applying EWA with a well-chosen 𝜂 and 𝑝1 = (1/𝑑, . . . , 1/𝑑) and sampling 𝜃𝑡 ∼ 𝑝𝑡 at every round,
satisfies the expected regret

E
[
𝑅𝑇

]
= E

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 )
]
≤ 2𝐵

√︁
𝑇 log𝑑

for 𝜂 well tuned.

Exercise 2.3. Using Hoeffding’s inequality, provide a bound on the regret 𝑅𝑇 with probability 1 − 𝛿 .

Proof. Using 𝑔𝑡 =
(
ℓ𝑡 (1), . . . , ℓ𝑡 (𝑑)

)
∈ [−𝐵, 𝐵]𝑑 , from Theorem 1 of last class, we have

𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ −min

𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤ 2𝐵
√︁
𝑇 log𝑑 .

It suffices then to take the expectation and remark that

E
[
ℓ𝑡 (𝜃𝑡 )

]
= E

[
E[ℓ𝑡 (𝜃𝑡 ) |𝑝𝑡 ]

]
= E

[
⟨𝑝𝑡 , 𝑔𝑡 ⟩

]
.

□

It is worth pointing out that we did not make any assumption on the loss function ℓ𝑡 beside boundedness.
In particular, it can be non-convex.

Example 2.1 (Online classification). Assume that youmaywant to predict a sequence of labels𝑦1, . . . , 𝑦𝑇 ∈
{0, 1} (such as spams) based on expert advice 𝑥𝑡 (𝑘) ∈ {0, 1} (such as different spam detectors). Then, using
the losses ℓ𝑡 (𝑘) = 1𝑥𝑡 (𝑘 )≠𝑦𝑡 , EWA ensures

E

[
𝑇∑︁
𝑡=1

1𝜃𝑡≠𝑦𝑡 − min
1≤𝑘≤𝑑

𝑇∑︁
𝑡=1

1𝑥𝑡 (𝑘 )≠𝑦𝑡

]
≤ 2

√︁
𝑇 log𝑑 .

Hence, the expected number of mistakes of the algorithms will not be much larger than the one of the best
expert. This is valid though the loss function is nonconvex.

2.2 Convex and compact decision set

Setting: linear loss function, convex and compact decision set Θ.

In this section, we generalize the preceding sections to any compact convex decision set Θ ⊂ R𝑑 . We
still assume that the loss functions take a linear form

∀𝜃 ∈ Θ, ℓ𝑡 (𝜃 ) = ⟨𝜃, 𝑔𝑡 ⟩ ,

for some 𝑔𝑡 ∈ R𝑑 . We provide a few well-known algorithms in this setting.

2.2.1 Online Gradient Descent

We introduce, Online Gradient Descent, and is due to Zinkevich [2003] in the online learning setting. It
is an online variant of the well-known Gradient Descent algorithm in optimization.
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Parameter: 𝜂 > 0, 𝜃1 ∈ Θ
For 𝑡 = 1, . . . ,𝑇

– select 𝜃𝑡 ; incur loss ℓ𝑡 (𝜃𝑡 ) = ⟨𝜃𝑡 , 𝑔𝑡 ⟩ and observe 𝑔𝑡 ∈ R𝑑 ;
– update

𝜃𝑡+1 = ΠΘ
(
𝜃𝑡 − 𝜂𝑔𝑡

)
,

where ΠΘ is the Euclidean projection onto Θ.

Algorithm 2.2: Online Gradient Descent (OGD) for linear losses ℓ𝑡 (𝜃 ) = ⟨𝜃, 𝑔𝑡 ⟩.

Theorem 2.7
Then for any sequence 𝑔1, . . . , 𝑔𝑇 ∈ R𝑑 , if the looses are linear ℓ𝑡 (𝜃 ) = ⟨𝜃, 𝑔𝑡 ⟩, the regret of OGD satisfies

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − ℓ𝑡 (𝜃 ∗) ≤
∥𝜃 ∗ − 𝜃1∥2

2𝜂 + 𝜂2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 ,

where 𝜃 ∗ ∈ arg min𝜃 ∈Θ
∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ). In particular, if max𝜃 ∈Θ ∥𝜃 − 𝜃1∥ ≤ 𝐷2 and ∥𝑔𝑡 ∥ ≤ 𝐺2 for all 𝑡 , for

𝜂 =
𝐷2

𝐺2
√
𝑇
, we have 𝑅𝑇 ≤ 𝐷2𝐺2

√
𝑇 .

Exercise 2.4. Prove an upper-bound on the regret of OGD

a) when 𝜂 is calibrated with a doubling trick.
b) when 𝜂 is calibrated using a time-varying parameter 𝜂𝑡

Exercise 2.5. Prove an upper-bound on the regret of OGDwith respect to any sequence of points 𝜃 ∗1, . . . , 𝜃
∗
𝑡 ∈

Θ such that
∑𝑇
𝑡=2 ∥𝜃 ∗𝑡 − 𝜃 ∗𝑡−1∥ ≤ 𝑋

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗𝑡 ) ≤ . . .

Remark. Assume that Θ = Δ𝑑 is the simplex and the loss functions are of the form ℓ𝑡 (𝜃 ) = ⟨𝜃, 𝑔𝑡 ⟩ where
∥𝑔𝑡 ∥∞ ≤ 𝐺∞. Then both EWA and OGD are possible algorithms (see Theorems 2.1 and 2.7). We saw in
Theorem 2.1 that EWA has a regret bound 𝑅𝑇 ≤ 2𝐺∞

√︁
𝑇 log𝑑 . In this case, for all 𝑝, 𝑝′ ∈ Δ𝑑

∥𝑝 − 𝑝′∥ =
𝑑∑︁
𝑘=1

(
𝑝 (𝑖) − 𝑝′(𝑖)

)2 ≤
𝑑∑︁
𝑖=1

��𝑝 (𝑖) − 𝑝′(𝑖)�� ≤ 𝑑∑︁
𝑖=1

𝑝 (𝑖) + 𝑝′(𝑖) = 2 ,

and ∥𝑔𝑡 ∥ ≤
√
𝑑 ∥𝑔𝑡 ∥∞ ≤

√
𝑑𝐺∞. Therefore, the regret of OGD is upper-bounded by 𝑅𝑇 ≤ 𝐺∞

√
2𝑑𝑇 . To

summarize
EWA: 𝑅𝑇 ≤ 2𝐺∞

√︁
𝑇 log𝑑 and OGD: 𝑅𝑇 ≤

√
2𝑑𝑇 .

The dependence on 𝑑 of OGD is suboptimal in this case. This is solved by OMD, a generalization of both
algorithms.

Proof of Theorem 2.7. Let 𝜃 ∗ ∈ arg min𝜃 ∈Θ
∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ) and denote 𝑧𝑡+1 = 𝜃𝑡 − 𝜂𝑔𝑡 so that by definition of

𝜃𝑡+1 in the algorithm, we have 𝜃𝑡+1 = ΠΘ(𝑧𝑡+1). By convexity, the regret can be upper-bounded as

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − ℓ𝑡 (𝜃 ∗) =

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝜃𝑡 − 𝜃 ∗⟩
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=
1
𝜂

𝑇∑︁
𝑡=1
⟨𝑧𝑡+1 − 𝜃𝑡 , 𝜃𝑡 − 𝜃 ∗⟩ ← 𝑔𝑡 =

𝑧𝑡+1 − 𝜃𝑡
𝜂

.

Then, we use the equality ∥𝑥 − 𝑦∥2 = ∥𝑥 ∥2 + ∥𝑦∥2 − 2⟨𝑥,𝑦⟩ for all 𝑥,𝑦 ∈ Θ so that

⟨𝑥,𝑦⟩ = ∥𝑥 ∥
2 + ∥𝑦∥2 − ∥𝑥 − 𝑦∥2

2 .

Applying it with 𝑥 = 𝑧𝑡+1 − 𝜃𝑡 and 𝑦 = 𝜃𝑡 − 𝜃 ∗ en substituting into the above regret bound, this yields

𝑅𝑇 ≤
1

2𝜂

𝑇∑︁
𝑡=1

(
∥𝑧𝑡+1 − 𝜃𝑡 ∥2 + ∥𝜃 ∗ − 𝜃𝑡 ∥2 − ∥𝑧𝑡+1 − 𝜃 ∗∥2

)
Then, using ∥𝑧𝑡+1 −𝜃𝑡 ∥ = 𝜂∥𝑔𝑡 ∥ and ∥𝜃 ∗ −𝜃𝑡 ∥ ≤ ∥𝜃 ∗ − 𝑧𝑡 ∥ because Θ is convex and 𝜃𝑡 = ΠΘ(𝑧𝑡 ), we get

𝑅𝑇 ≤
1

2𝜂

𝑇∑︁
𝑡=1

(
𝜂2∥𝑔𝑡 ∥2 + ∥𝜃 ∗ − 𝑧𝑡 ∥2 − ∥𝑧𝑡+1 − 𝜃 ∗∥2

)
.

The last terms telescope, therefore summing over 𝑡 concludes the proof

𝑅𝑇 ≤
𝜂

2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 +

∥𝜃 ∗ − 𝜃1∥2
2𝜂 .

□

2.2.2 Regularized Follow the Leader

In the preceding section, EWA and OGD were introduced. Here, we will present more versatile
algorithms that rely on a regularization function 𝑅 : Θ → R, appearing to be generalizations of the
earlier algorithms. We consider the RFTL algorithm defined in Algorithm 2.3, which depends on a
strongly convex, smooth, and twice differentiable regularization function 𝑅 : Θ→ R.

Input: 𝜂 > 0, regularization function 𝑅 > 0
Let 𝜃1 = arg min𝜃 ∈Θ

{
𝑅(𝜃 )

}
For 𝑡 = 1 to 𝑇 do

– Play 𝜃𝑡 incur loss ℓ𝑡 (𝜃𝑡 ) = ⟨𝜃𝑡 , 𝑔𝑡 ⟩ and and observe 𝑔𝑡 ∈ R𝑑
– Update

𝜃𝑡+1 = arg min
𝜃 ∈Θ

{
𝜂

𝑡∑︁
𝑠=1
⟨𝜃, 𝑔𝑠⟩ + 𝑅(𝜃 )

}
end for

Algorithm 2.3: Regularized Follow the Leader (RFTL)

Before stating the theorem, let us first recall a few basic definitions useful for the analysis.

Definition 2.2 Strong convexity
We say that a differentiable function 𝑓 : Θ→ R is 𝛼-strongly convex with respect to a norm ∥ · ∥ 𝑓 if for
all 𝜃, 𝜃 ′ ∈ Θ

𝑓 (𝜃 ) ≥ 𝑓 (𝜃 ′) + ⟨∇𝑓 (𝜃 ′), 𝜃 − 𝜃 ′⟩ + 𝛼2 ∥𝜃 − 𝜃
′∥2
𝑓
.
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Theorem 2.8 RFTL regret upper-bound
Let 𝑇 ≥ 1. Let 𝑅 : Θ → R be a regularization which is 𝛼-strongly convex with respect to some norm
∥ · ∥𝑅 and let 𝐷𝑅 ≥

√︁
max𝜃 𝑅(𝜃 ) −min𝜃 𝑅(𝜃 ). Then, for a well-chosen 𝜂 > 0, the regret of RFTL is

upper-bounded as

𝑅𝑇 ≤ 2𝐷𝑅

√√√
2
𝛼

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2𝑅,∗ ,

where ∥ · ∥𝑅,∗
def
= sup∥𝜃 ∥≤1⟨·, 𝜃⟩ is the dual norm of ∥ · ∥𝑅 .

Proof. Let 𝑇 ≥ 1. Define for all 𝑡 ≥ 1 the function Φ𝑡 such that for all 𝜃 ∈ Θ

Φ𝑡 (𝜃 ) = 𝜂
𝑡∑︁
𝑠=1
⟨𝜃, 𝑔𝑠⟩ + 𝑅(𝜃 ) .

Note that by definition 𝜃𝑡+1 = arg min𝜃 Φ𝑡 (𝜃 ). Let 𝜃 ∈ Θ. Then,

𝑅𝑇 (𝜃 )
def
=

𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ −

𝑇∑︁
𝑡=1
⟨𝜃, 𝑔𝑡 ⟩

=

𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ −

Φ𝑇 (𝜃 )
𝜂
+ 𝑅(𝜃 )

𝜂

≤
𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ −

Φ𝑇 (𝜃𝑇+1)
𝜂

+ 𝑅(𝜃 )
𝜂

=

𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ − ⟨𝜃𝑇+1, 𝑔𝑇 ⟩ −

Φ𝑇−1(𝜃𝑇+1)
𝜂

+ 𝑅(𝜃 )
𝜂

≤
𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ − ⟨𝜃𝑇+1, 𝑔𝑇 ⟩ −

Φ𝑇−1(𝜃𝑇 )
𝜂

+ 𝑅(𝜃 )
𝜂

≤
𝑇∑︁
𝑡=1
⟨𝜃𝑡 , 𝑔𝑡 ⟩ −

𝑇∑︁
𝑡=𝑇−1

⟨𝜃𝑡+1, 𝑔𝑡 ⟩ −
Φ𝑇−2(𝜃𝑇−1)

𝜂
+ 𝑅(𝜃 )

𝜂

≤
𝑇∑︁
𝑡=1
⟨𝜃𝑡 − 𝜃𝑡+1, 𝑔𝑡 ⟩ +

𝑅(𝜃 ) − 𝑅(𝜃1)
𝜂

← by induction

≤
𝑇∑︁
𝑡=1
∥𝜃𝑡 − 𝜃𝑡+1∥𝑅 ∥𝑔𝑡 ∥𝑅,∗ +

𝑅(𝜃 ) − 𝑅(𝜃1)
𝜂

← by Cauchy-Schwarz

≤
𝑇∑︁
𝑡=1
∥𝜃𝑡 − 𝜃𝑡+1∥𝑅 ∥𝑔𝑡 ∥𝑅,∗ +

𝐷2
𝑅

𝜂
← by definition of 𝐷𝑅 (2.7)

It now remains to upper-bound ∥𝜃𝑡 − 𝜃𝑡+1∥𝑅 for all 𝑡 ≥ 1. Let 𝑡 ≥ 1. Using that 𝑅 is 𝛼-strongly convex,
we have

𝛼

2 ∥𝜃𝑡+1 − 𝜃𝑡


2
𝑅
≤ 𝑅(𝜃𝑡 ) − 𝑅(𝜃𝑡+1) + ⟨∇𝑅(𝜃𝑡+1), 𝜃𝑡+1 − 𝜃𝑡 ⟩

= ⟨∇𝜙𝑡 (𝜃𝑡+1), 𝜃𝑡+1 − 𝜃𝑡 ⟩ + Φ𝑡 (𝜃𝑡 ) − Φ𝑡 (𝜃𝑡+1)
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But since 𝜃𝑡+1 = arg min𝜃 Φ𝑡 (𝜃 ), from the optimality condition, we have ⟨∇𝜙𝑡 (𝜃𝑡+1), 𝜃𝑡+1 − 𝜃𝑡 ⟩ ≤ 0 ,
which yields

𝛼

2 ∥𝜃𝑡+1 − 𝜃𝑡


2
𝑅
≤ Φ𝑡 (𝜃𝑡 ) − Φ𝑡 (𝜃𝑡+1)

= Φ𝑡−1(𝜃𝑡 ) + Φ𝑡−1(𝜃𝑡+1) + 𝜂⟨𝜃𝑡 − 𝜃𝑡+1, 𝑔𝑡 ⟩
≤ 𝜂⟨𝜃𝑡 − 𝜃𝑡+1, 𝑔𝑡 ⟩
≤ 𝜂∥𝜃𝑡 − 𝜃𝑡+1∥𝑅 ∥𝑔𝑡 ∥2𝑅,∗ .

Thus, 

𝜃𝑡+1 − 𝜃𝑡

𝑅 ≤ 2𝜂
𝛼
∥𝑔𝑡 ∥𝑅,∗ .

Plugging back into (2.7) and optimizing 𝜂 concludes the regret bound

𝑅𝑇 ≤
𝐷2
𝑅

𝜂
+ 2𝜂
𝛼

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2𝑅,∗ .

□

Let us first see a few special cases of RFTL.

Euclidean regularization. Choosing 𝑅(𝜃 ) = 1
2 ∥𝜃 − 𝜃1∥2, Theorem 2.8 recovers up to a factor

√
2 the

same regret upper-bound as the one of OGD in Theorem 2.7. Indeed, here, 𝑅 is 1-strongly convex with
respect to the Euclidean norm ∥ · ∥ whose dual is also ∥ · ∥∗ = ∥ · ∥. In this case, for any 𝜃 ,

𝑅(𝜃 ) − 𝑅(𝜃1) =
1
2 ∥𝜃 − 𝜃1∥ ,

thus 𝐷𝑅 = 𝐷2/2, which gives the regret upper-bound 𝑅𝑇 ≤ 𝐷2𝐺2
√

2𝑇 . Note that in this case, RFTL is
close but different from OGD.

Entropic regularization. Let 𝜃1 ∈ Θ := Δ𝑑 . Then, we recover the exponentially weighted average
forecaster by choosing

𝑅(𝜃 ) = 𝐾𝐿(𝜃 | |𝜃1) :=
〈
𝜃, log

( 𝜃
𝜃1

)〉
where by abuse of notation, we write log𝑥 = (log𝑥 (1), . . . , log𝑥 (𝑑)) and log 𝑥

𝑦
= log𝑥 − log𝑦. In this

case,
𝐷𝑅 ≤ − log

(
min
𝑖
𝜃1(𝑖)

)
and we can show that 𝑅 is 1-strongly convex with respect to the ℓ1-norm. Indeed, ∇𝑅(𝜃 ) = 1+ log(𝜃/𝜃1)
and for any 𝑥,𝑦 ∈ Δ𝑑 ,

𝑅(𝑥) − 𝑅(𝑦) − ⟨∇𝑅(𝑦), 𝑥 − 𝑦⟩ = ⟨𝑥, log 𝑥

𝜃1
⟩ − ⟨𝑦, log 𝑦

𝜃1
⟩ − ⟨1 + log 𝑦

𝜃1
, 𝑥 − 𝑦⟩

=

〈
𝑥, log 𝑥

𝑦

〉
= 𝐾𝐿(𝑥 | |𝑦) ≥

∥𝑥 − 𝑦∥21
2

where the last inequality is by Pinsker’s inequality. Thus, Theorem 2.8 provides the regret upper-bound
𝑅𝑇 ≤ 2

√︁
2𝑇 log𝑑 if 𝜃1 = (1/𝑑, . . . , 1/𝑑) which is similar to the one of the exponentially weighted average

forecaster proved in Theorem 2.1 up to a factor
√

2. Note that in this case, RFTL exactly matches with
EWA as shown by the following proposition.
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Proposition 2.9

Let 𝑔 ∈ R𝑑 then, the solution of 𝜃∗ = arg min𝜃 ∈Δ𝑑

{
𝜂⟨𝜃, 𝑔⟩ + 𝐾𝐿(𝜃 | |𝜃1)

}
has a closed-form solution

defined component-wise by

𝜃∗(𝑘) =
𝜃1(𝑘) exp(−𝜂𝑔𝑘 )∑𝑑
𝑖=1 𝜃1(𝑘) exp(−𝜂𝑔 𝑗 )

. (2.8)

Proof. Let 𝜃 ∈ R𝑑 , then

−𝜂⟨𝜃, 𝑔⟩ − 𝐾𝐿(𝜃 | |𝜃1) = log
(
𝑒−𝜂⟨𝜃,𝑔⟩+𝐾𝐿 (𝜃 | |𝜃1 )

)
= log

(
𝑒

〈
𝜃,−𝜂𝑔+log 𝜃1

𝜃

〉)
≤ log

(〈
𝜃, 𝑒−𝜂𝑔+log 𝜃1

𝜃

〉)
← Jensen’s inequality

≤ log
(〈
𝜃1, 𝑒

−𝜂𝑔〉) ← The ineq. is strict if 𝜃1 has smaller suport than 𝜃 .

But for 𝜃∗ satisfying (2.8) we have

−𝜂⟨𝜃∗, 𝑔⟩ − 𝐾𝐿(𝜃∗ | |𝜃1) = −𝜂
⟨𝑒−𝜂𝑔𝜃1, 𝑔⟩
⟨𝜃1, 𝑒−𝜂𝑔⟩

− ⟨𝑒
−𝜂𝑔𝜃1,−𝜂𝑔 − log⟨𝜃1, 𝑒

−𝜂𝑔⟩⟩
⟨𝜃1, 𝑒−𝜂𝑔⟩

= log
(〈
𝜃1, 𝑒

−𝜂𝑔〉) .
This concludes the proof. □

The above proposition can also be proved using Lagragian and classical tools from constrained convex
optimization (left as exercise).

2.2.3 Online Mirror Descent

Online Mirror Descent (OMD) is another generalization of OGD to better exploit the geometry of
the decision space Θ. OMD is the online counterpart of the Mirror Descent algorithm from convex
optimization. The generality of OMD comes from the updates being performed into a dual space which
is defined by a convex differentiable regularization function 𝑅 : Θ→ R.

Before stating the algorithm, we need to define the Bregman divergence.

Definition 2.3 Bregman divergence
For any continuously differentiable convex function 𝑅, the Bregman divergence with respect to 𝑅 is
defined as

𝐷𝑅 (𝑥 | |𝑦) ≤ 𝑅(𝑥) − 𝑅(𝑦) − ∇𝑅(𝑦) · (𝑥 − 𝑦) ∀𝑥,𝑦 ∈ Θ .

It is the difference between the value of the regularization function at 𝑥 and the value of its first order
Taylor approximation. It is nonnegative but not symmetric. Online Mirror Descent is then defined as
follows.

Theorem 2.10 Regret of OMD
Let 𝑡 ≥ 1. Let Θ be a compact and convex set. Then, for all sequences (𝑔𝑡 ) ∈ R𝑑 , the regret of OMD is
upper-bounded as

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤
𝐷

𝜂
+ 1
𝜂

𝑇∑︁
𝑡=1

𝐷𝑅∗
(
∇𝑅(𝜃𝑡 ) − 𝜂𝑔𝑡 | |∇𝑅(𝜃𝑡 )

)
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Parameters: 𝜂 > 0, regularization function 𝑅
Initialize: 𝑧1 ∈ R𝑑 such that ∇𝑅(𝑧1) = 0 and 𝜃1 = arg min𝜃 ∈Θ 𝐷𝑅 (𝜃 | |𝑦1)
For 𝑡 = 1, . . . ,𝑇

– select 𝜃𝑡 ; incur loss ℓ𝑡 (𝜃𝑡 ) and observe 𝑔𝑡 ∈ R𝑑
– update 𝑧𝑡 such that

∇𝑅(𝑧𝑡+1) = ∇𝑅(𝜃𝑡 ) − 𝜂𝑔𝑡 .

– project according to the Bregman divergence

𝜃𝑡+1 ∈ arg min
𝜃 ∈Θ

𝐷𝑅 (𝜃 | |𝑧𝑡+1) .

Algorithm 2.4: Online Mirror Descent (OMD)

where𝐷 ≥ max𝜃 ∈Θ |𝑅(𝜃 ) | and𝑅∗ is the Fenchel conjugate of𝑅 defined as𝑅∗(𝑧) def
= max𝜃 ∈Θ

{
𝜃 ·𝑧−𝑅(𝜃 )

}
.

The proof can be found for instance in Bubeck et al. [2012]. EG and OGD are two particular cases of
Online Mirror Descent.

Example 2.2 (Balls in R𝑑 = OGD). If Θ ⊂ R𝑑 , we can choose 𝑅(𝑥) = 1
2 ∥𝑥 ∥

2. Then ∇𝑅(𝑥) = 𝑥 and
𝐷𝑅 (𝑥 | |𝑦) = 1

2 ∥𝑥 − 𝑦∥
2. Therefore, the update of OMD becomes 𝑦𝑡+1 = 𝜃𝑡 − 𝜂∇ℓ𝑡 (𝜃𝑡 ) and 𝜃𝑡+1 = ΠΘ(𝑦𝑡+1).

We recover the online gradient descent algorithm.

Example 2.3 (Simplex = EWA). If Θ = Δ𝑑 . We can choose the negative entropy

𝑅(𝑥) =
𝑑∑︁
𝑖=1

𝑥 (𝑖) log𝑥 (𝑖) .

In this case, ∇𝑅(𝑥)𝑖 = 1 + log𝑥 (𝑖) and the Bregman Divergence is 𝐷𝑅 (𝑥 | |𝑦) =
∑𝑑
𝑖=1 𝑥 (𝑖) log(𝑥 (𝑖)/𝑦 (𝑖))

also known as the Kullback-Leibler divergence. The update of OMD is then

1 + log(𝑦𝑡+1(𝑖)) = 1 + log𝜃𝑡 (𝑖) − 𝜂𝑔𝑡 (𝑖) ,

where 𝑔𝑡 = ∇ℓ𝑡 (𝜃𝑡 ) ∈ R𝑑 . This can be rewritten

𝑦𝑡+1(𝑖) = 𝜃𝑡 (𝑖)𝑒−𝜂 [∇ℓ𝑡 (𝜃𝑡 ) ]𝑖 .

The projection to the simplex is a simple renormalization (left as exercise), we thus get

𝜃𝑡+1(𝑖) =
𝜃𝑡 (𝑖)𝑒−𝜂𝑔𝑡 (𝑖 )∑𝑑
𝑘=1 𝜃𝑡 (𝑘)𝑒−𝜂𝑔𝑡 (𝑘 )

,

and we recover the update of EWA.
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3 Online Convex Optimization

3 Online Convex Optimization

In this section, we aim at generalizing the previous algorithms beyond linear losses ℓ𝑡 : Θ→ R.

3.1 Variants of Exponential Weights for continuous action spaces

Here, we present simple solutions via discretization or integration of EWA that yield strong theoretical
baselines (for the regret) when the action space is continuous but often yields prohibitive complexity.

3.1.1 Continuous EWA

Let Θ ∈ R𝑑 be a compact and convex subset of R𝑑 . We consider the following continous variant of
EWA, that predicts

𝜃𝑡 =

∫
Θ
𝜃𝑒−𝜂

∑𝑡−1
𝑠=1 ℓ𝑠 (𝜃 )𝑑𝜇 (𝜃 )∫

Θ
𝑒−𝜂

∑𝑡−1
𝑠=1 ℓ𝑠 (𝜃 ′ )𝑑𝜇 (𝜃 ′)

,

where 𝜇 is the Lebesgue measure on Θ.

Theorem 3.1 Regret of continuous EWA
Let 𝑇 ≥ 1. For all sequences of 𝜂-exp-concave losses ℓ1, . . . , ℓ𝑡 the continuous EWA forecaster satisfies

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − inf
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤
1 + 𝑑 log(𝑇 + 1)

𝜂
.

Note that if Θ = Δ𝑑 , then Θ is of dimension 𝑑 − 1 and not 𝑑 . As an exercise, prove a regret upper-bound
without the expconcavity assumption of order 𝑂 (

√
𝑇 ).

Proof. The proof starts similarly to the one of Theorem 2.4. Let us denote 𝑊𝑡 (𝜃 ) = 𝑒−𝜂
∑𝑡

𝑠=1 ℓ𝑠 (𝜃 ) ,
𝑊𝑡 =

∫
Θ
𝑊𝑡 (𝜃 )𝑑𝜇 (𝜃 ) and 𝑑𝜇̂𝑡 (𝜃 ) =𝑊𝑡 (𝜃 )𝑑𝜇 (𝜃 )/𝑊𝑡 . Then,

𝑊𝑇 =

∫
Θ
𝑒−𝜂

∑𝑇
𝑡=1 ℓ𝑡 (𝜃 )𝑑𝜇 (𝜃 )

= 𝑊𝑇−1

∫
Θ

𝑊𝑇−1(𝜃 )
𝑊𝑇−1

𝑒−𝜂ℓ𝑇 (𝜃 )𝑑𝜇 (𝜃 )

= 𝑊𝑇−1

∫
Θ
𝑒−𝜂ℓ𝑇 (𝜃 )𝑑𝜇̂𝑇−1(𝜃 ) ← 𝜃𝑇 =

∫
Θ
𝜃𝑑𝜇̂𝑇−1(𝜃 )

≤ 𝑊𝑇−1 exp
(
− 𝜂ℓ𝑇 (𝜃𝑇 )

)
← 𝜂-exp-concavity

≤ 𝑊0 exp
(
−𝜂

𝑇∑︁
𝑡=1

ℓ𝑡
(
𝜃𝑡

))
, ← induction (3.1)
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The second part of the proof to lower-bound𝑊𝑇 is however less straightforward. For simplicity, let
us assume that ℓ𝑡 are continuous on Θ (do the general case as exercise). Therefore the infimum is a
minimum and let 𝜃 ∗ ∈ arg min𝜃 ∈Θ

∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ) and define

Θ𝜀
def
=

{
(1 − 𝜀)𝜃 ∗ + 𝜀𝜃, 𝜃 ∈ Θ

}
, 𝜀 ∈ (0, 1) .

Note that by convexity of Θ, Θ𝜀 ⊆ Θ. By expconcavity of ℓ𝑡 , we have for all 𝑡 and all 𝜃 = (1 − 𝜀)𝜃 ∗ + 𝜀𝑞

𝑒−𝜂ℓ𝑡 (𝜃 ) ≥ (1 − 𝜀)𝑒−𝜂ℓ𝑡 (𝜃 ∗ ) + 𝜀𝑒−𝜂ℓ𝑡 (𝑞) ≥ (1 − 𝜀)𝑒−𝜂ℓ𝑡 (𝜃 ∗ ) .

Therefore, for all 𝜃 ∈ Θ𝜀
𝑒−𝜂

∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ) ≥ (1 − 𝜀)𝑇𝑒−𝜂

∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ∗ )

Integrating both parts over Θ𝜀 and using

𝜇 (Θ𝜀) =
∫
Θ𝜀

𝑑𝜇 (𝜃 ) =
∫
Θ
𝑑𝜇 ((1 − 𝜀)𝜃 ∗ + 𝜀𝜃 ) ≥

∫
Θ

det(𝜀𝐼𝑑 )𝑑𝜇 (𝜃 ) =
∫
Θ
𝜀𝑑𝑑𝜇 (Θ) = 𝜀𝑑𝜇 (Θ)

we get
𝑊𝑇 ≥

∫
Θ𝜀

𝑒−𝜂
∑𝑇

𝑡=1 ℓ𝑡 (𝜃 )𝑑𝜇 (𝜃 ) ≥ 𝜇 (Θ)𝜀𝑑 (1 − 𝜀)𝑇𝑒−𝜂
∑𝑇

𝑡=1 ℓ𝑡 (𝜃 ∗ ) .

Combining with (3.1), using𝑊0 = 𝜇 (Θ), taking the log and reorganizing the terms yields

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗) ≤
𝑑 log 1

𝜀
+𝑇 log 1

1−𝜀
𝜂

.

Optimizing 𝜀 = 1/(𝑇 + 1) concludes the proof since

𝑇 log 1
1 − 𝜀 = 𝑇 log

(
1 + 1

𝑇

)
≤ 1 .

□

Though the nice theoretical result, this algorithm is complicated to implement because of the integral.
In practice, 𝜃𝑡 can be computed by using (1/𝑇 )-discretization grid of Θ (bad complexity of order𝑇𝑑 !) or
by using Monte-Carlo methods to approximate the integral of log-concave distributions (polynomial
time algorithm). We will see in next lectures efficient algorithms with similar guarantees.

Example: Portfolio selection

This algorithm was introduced first for the problem of portfolio selection by ? and also known as
Univeresal Portfolio in this framework. In the latter, given a initial capital Cap0 a trader repeatedly
distributes her capital over 𝑑 assets with the goal of maximizing the total return. At each round
𝑡 = 1, . . . ,𝑇 , the trader chooses an allocation 𝑝𝑡 ∈ Δ𝑑 . Here, 𝑝𝑡 (𝑖) represents the share of capital
innvested into asset 𝑖 ∈ [𝑑] at this round. At the end of the round, the returns–the ratios of the closing
and opening pricese in this round–are revealed in the form of 𝑥𝑡 ∈ R𝑑+ and the trader’s capital is updated
as

Cap𝑡 = Cap𝑡−1⟨𝑝𝑡 , 𝑥𝑡 ⟩ .
By Cover, the performance of a strategy that selected portfolios (𝑝𝑡 ) is quantified by comparing the
final capital Cap𝑇 = Cap0

∏𝑇
𝑡=1⟨𝑝𝑡 , 𝑥𝑡 ⟩ against

Cap∗𝑇 = Cap0 max
𝑝∈Δ𝑑

⟨𝑝𝑡 , 𝑥𝑡 ⟩ ,
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the “idealized” final capital attained by the best “static” strategy constrained to select the same portfolio
in all rounds. Due to the multiplicative structure, to maximize the capital it is natural to maximize the
ratio Cap𝑇 /Cap∗

𝑇
, which is equivalent to minimizing the regret

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝𝑡 ) − min
𝑝∈Δ𝑑

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑝)

where ℓ𝑡 (𝑝)
def
= − log⟨𝑝, 𝑥𝑡 ⟩. Noting that the loss is 1-exp-concave, continuous EWA achives the regret

upper-bound of Thm 3.1, which yields

Cap𝑇 ≥
Cap∗

𝑇

𝑒 (𝑇 + 1)𝑑
,

which is optimal in the worst-case.

3.1.2 Discretized EWA

Setting: general compact decision set, 𝛽-Hölder loss functions

In this section, we aim at designing a procedure for general compact decision set Θ. We will assume for
simplicity that Θ ⊂ R𝑑 with max𝜃,𝜃 ′∈Θ ∥𝜃 − 𝜃 ′∥ ≤ 𝐷 , where ∥ · ∥ denotes the Euclidean norm. If the
loss functions ℓ𝑡 are 𝛽-Hölder, i.e., ��ℓ𝑡 (𝜃 ) − ℓ𝑡 (𝜃 ′)�� ≤ 𝑐 ∥𝜃 − 𝜃 ′∥𝛽
there exists a simple solution: approximate Θ with a finite discretization grid Θ𝜀 and apply EWA on Θ𝜀 .
If Θ or the losses are non-convex, one needs to use the random EWA (see Section 2.1.3) and bound the
regret with high-probability. For convenience, we will assume Θ and the loss functions ℓ𝑡 to be convex
so that the algorithm can play convex combinations of points in Θ𝜀 and all quantities are deterministic.

Lemma 3.2
Let 𝜀 > 0. Let Θ ⊂ R𝑑 such that max𝜃,𝜃 ′∈Θ ∥𝜃 − 𝜃 ′∥ ≤ 𝐷 . Then, there exists Θ𝜀 ⊂ Θ such that

Card(Θ𝜀) ≲
(𝐷
𝜀

)𝑑
and ∀𝑥 ∈ Θ, ∃𝑥 ′ ∈ Θ𝜀 ∥𝜃 − 𝜃 ′∥ ≤ 𝜀 ,

where ≲ denotes a rough inequality (up to multiplicative constants and logarithmic terms).

Remark. Remark that a set finite Θ𝜀 which approximate Θ at radius 𝜀, is called an 𝜀-covering of Θ. The
cardinal of the smallest 𝜀-covering is called the covering number of Θ. This cardinal is heavily used in
theory to analyze the complexity of general spaces Θ. It heavily differentiates parametric spaces with
covering number of order (1/𝜀)𝑑 with nonparametric spaces (spaces of functions) for which the logarithm
of the covering number (or metric entropy) is of order (1/𝜀)𝑑 .

Proof sketch. We only provide the high-level idea of the proof. First, by properties of the Lebesgue
measure in 𝑑-dimension, denoting B2(𝑟 ) is the ℓ2-ball of radius 𝑟 > 0, we have
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Vol
(
B2(𝑟 )

)
=

𝜋𝑑/2

Γ(𝑛/2 + 1) 𝑟
𝑑 ,

where Γ is the Euler’s gamma function. Therefore,

Vol(Θ) ≤ Vol
(
B2(𝐷/2)

)
=

(𝐷
2𝜀

)𝑑
Vol

(
B2(𝜀)

)
,

and thus approximatively
(
𝐷
2𝜀

)𝑑
balls of radius 𝜀 are sufficient to

cover Θ.

 

 

□

Theorem 3.3 Discretized EWA
Let 𝑇 ≥ 1, 𝜀, 𝐷 > 0. Let Θ be a compact convex subset of R𝑑 such that max𝜃,𝜃 ′∈Θ ∥𝜃 − 𝜃 ′∥ ≤ 𝐷 . Let
Θ𝜀 be an 𝜀-covering of Θ with smallest cardinal. Then, for all sequences of 𝛽-Hölder convex losses
ℓ1, . . . , ℓ𝑇 : Θ→ [0, 1], EWA played on the finite set of action Θ𝜀 with optimized 𝜂 satisfies the regret
bound

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≲
√︄
𝑇𝑑

(
log𝐷 + 1

𝛽
log(𝑐𝑇 )

)
.

Exercise 3.1. Provide a bound on the expected regret for random EWA when the losses and the decision set
are non-convex.

Proof. Let 𝑑 = Card(Θ𝜀). Let us order the elements of Θ𝜀 = {𝜃 (1), . . . , 𝜃 (𝑑)}. Therefore, at time 𝑡 ≥ 1,
EWA chooses a weight vector 𝑝𝑡 ∈ Δ𝑑 and predict the weighted average 𝜃𝑡 =

∑𝑑
𝑘=1 𝑝𝑡 (𝑘)𝜃 (𝑘) ∈ Θ.

Applying the regret bound of EWA, we get

𝑇∑︁
𝑡=1

𝑑∑︁
𝑘=1

𝑝𝑡 (𝑘)ℓ𝑡 (𝜃 (𝑘)) − min
1≤ 𝑗≤𝑑

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ( 𝑗)) ≤ 2
√︁
𝑇 log𝑑 . (3.2)

Let 𝜃 ∗ ∈ Θ and 𝜃 (𝑘∗) ∈ Θ𝜀 such that ∥𝜃 ∗ − 𝜃 (𝑘∗)∥ ≤ 𝜀. Because the losses are 𝛽-Hölder and convex, we
have

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − ℓ𝑡 (𝜃 ∗)

Convexity
≤

𝑇∑︁
𝑡=1

𝑑∑︁
𝑘=1

𝑝𝑡 (𝑘)ℓ𝑡 (𝜃 (𝑘)) − ℓ𝑡 (𝜃 ∗) ← 𝜃𝑡 =

𝑑∑︁
𝑘=1

𝑝𝑡 (𝑘)𝜃 (𝑘)

≤
𝑇∑︁
𝑡=1

𝑑∑︁
𝑘=1

𝑝𝑡 (𝑘)ℓ𝑡 (𝜃 (𝑘∗)) − ℓ𝑡 (𝜃 (𝑘∗)) +
𝑇∑︁
𝑡=1

��ℓ𝑡 (𝜃 (𝑘∗)) − ℓ𝑡 (𝜃 ∗)��
(3.2)
≤ 2

√︁
𝑇 log𝑑 + 𝑇 max

1≤𝑡≤𝑇

��ℓ𝑡 (𝜃 ∗) − ℓ𝑡 (𝜃 (𝑘∗))��
𝛽-Hölder
≤ 2

√︁
𝑇 log𝑑 + 𝑐𝑇𝜀𝛽

Lem. 3.2
≲

√︂
𝑇𝑑 log

(𝐷
𝜀

)
+ 𝑐𝑇𝜀𝛽 .
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Optimizing 𝜀𝛽 = 1/𝑐𝑇 , hence 𝜀 = (𝑐𝑇 )−1/𝛽 , we get

𝑅𝑇 ≲

√︄
𝑇𝑑

(
log𝐷 + 1

𝛽
log(𝑐𝑇 )

)
.

□

Though this algorithm is theoretically convenient since it can deals with general compact sets Θ and
general loss functions (which can be non-convex and non-differentiable). It suffers two considerable
drawbacks:

– computational complexity: the algorithm needs to consider a discretization space of cardinal
(𝑋/𝜀)𝑑 which is of order 𝑂 (𝑇𝑑/𝛽 ). This is prohibitive in practice.

– bad regret dependence on the dimension: the regret bound is of order 𝑂 (
√︁
𝑑𝑇 log𝑇 ). We will see

how to have no dependence on 𝑑 when Θ is bounded in ℓ2-norm.

3.2 The Gradient Trick (from linear to convex losses)

Setting: compact convex decision set Θ, convex and sub-differentiable loss functions.

Here, we show how to generalize Chapter 2 to sub-differentiable loss functions ℓ𝑡 : Θ ⊂ R𝑑 → R.

Definition 3.1 Sub-gradient
A sub-gradient of a convex function ℓ𝑡 at point 𝜃 ∈ Θ is a point in R𝑑 , denoted ∇ℓ𝑡 (𝜃 ), that sastifies the
convexity inequality:

∀𝜃 ′ ∈ Θ, ℓ𝑡 (𝜃 ) − ℓ𝑡 (𝜃 ′) ≤ ⟨∇ℓ𝑡 (𝜃 ), 𝜃 − 𝜃 ′⟩ .

To do so, we introduce the gradient trick that consist in linearizing the losses to apply the results of the
previous section. The idea is to apply previous algorithms on the linear losses ⟨𝑔𝑡 , 𝜃⟩ with 𝑔𝑡 = ∇ℓ𝑡 (𝜃𝑡 ).
In this case, we have from the definition of the sub-gradients,

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − ℓ𝑡 (𝜃 ∗) ≤
𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝜃𝑡 ⟩ − ⟨𝑔𝑡 , 𝜃 ∗⟩ ,

where 𝜃 ∗ = arg min𝜃 ∈Θ
∑𝑇
𝑡=1 ℓ𝑡 (𝜃 ). Hence, upper-bouding the regret with linear losses 𝜃 ↦→ ⟨𝑔𝑡 , 𝜃⟩ also

upper-bound the regret with the true losses ℓ𝑡 . The following theorem follows.

Theorem 3.4 Gradient trick
Let A be an algorithm that satisfies the regret-upper bound

𝑇∑︁
𝑡=1
⟨𝑔𝑡 , 𝜃𝑡 ⟩ − ⟨𝑔𝑡 , 𝜃 ∗⟩ ≤ 𝑅(𝑇, (𝑔𝑡 ),Θ)

for some real-valued function 𝑅. Then, for any sequence of sub-differentiable losses ℓ𝑡 : Θ→ R, applying
A with 𝑔𝑡 = ∇ℓ𝑡 (𝜃𝑡 ) achieves the regret upper-bound

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤ 𝑅
(
𝑇, (∇ℓ𝑡 (𝜃𝑡 )),Θ

)
.

26



This theorems shows that all results (Theorems 2.1, 2.7, 2.8 and 2.10) of Chapter 2 can be transposed to
convex loss functions ℓ𝑡 : Θ→ R. Applyed with 𝑔𝑡 = ∇ℓ𝑡 (𝜃𝑡 ), we get the following regret upper-bounds:

𝑅𝑇 ≤ 2𝐺∞
√︁
𝑇 log𝑑 (EWA, Thm 2.1)

𝑅𝑇 ≤ 𝐷2𝐺2
√
𝑇 (OGD, Thm. 2.7)

𝑅𝑇 ≤ 2𝐷𝑅𝐺𝑅,∗
√

2𝛼−1𝑇 (RFTL, Thm. 2.8)

The EG Algorithm When the decision space is the simplex Θ = Δ𝑑 , applying the above trick to EWA
results in an algorithm called Exponentiated Gradient forecaster (EG). Recall that in this case we denote
the decision 𝜃𝑡 = 𝑝𝑡 .

Example 3.1 (Prediction with expert advice (continued)). In prediction with expert advice, a sequence
of observations 𝑦1, . . . , 𝑦𝑇 ∈ [0, 1] is to be predicted with the help of 𝑑 expert advice 𝑥𝑡 (𝑘) ∈ [0, 1] for
1 ≤ 𝑘 ≤ 𝑑 . The learner predict 𝑦𝑡 =

∑𝑑
𝑘=1 𝑝𝑡 (𝑘)𝑥𝑡 (𝑘) and suffers a loss ℓ (𝑦𝑡 , 𝑦𝑡 ). If the loss function is

convex and Lipschitz in its first argument we can apply Theorem ?? with ℓ𝑡 : 𝑝 ↦→ ℓ (𝑝 ·𝑥𝑡 , 𝑦𝑡 ). For instance,
with the absolute loss,𝐺 = 1 and EG satisfies a bounded regret with respect to any fixed convex combination
of experts:

𝑇∑︁
𝑡=1
|𝑦𝑡 − 𝑦𝑡 | −min

𝑝∈Θ

𝑇∑︁
𝑡=1

���𝑝 · 𝑥𝑡 − 𝑦𝑡 ��� ≤ 2
√︁
𝑇 log𝑑 .

Hence, on the long run we perform as good as the best convex combination of the experts which may
outperform the best expert. This may leads to much better performance than a simple EWA on the experts if

min
𝑝∈Θ

𝑇∑︁
𝑡=1

���𝑝 · 𝑥𝑡 − 𝑦𝑡 ��� ≪ min
𝑘∈[𝑑 ]

𝑇∑︁
𝑡=1

���𝑥𝑡 (𝑘) − 𝑦𝑡 ���.
Convex hull of finite point set It is worth pointing out that the simplex decision set Δ𝑑 can be
generalized with any convex hull of a finite point set 𝑆 = {𝜃 (1), . . . , 𝜃 (𝑑)}:

Conv(𝑆) =
{

𝑑∑︁
𝑖=1

𝑝𝑖𝜃 (𝑖) : ∀𝑖, 𝑝𝑖 > 0 and
𝑑∑︁
𝑖=1

𝑝𝑖 = 1
}
.

Transforming the loss functions, EWA can be applied to compete with such sets as shown by the
theorem bellow.

Theorem 3.5
Let𝑇 ≥ 1. LetΘ ⊂ R𝑑 be a convex set and 𝑆 = {𝜃 (1), . . . , 𝜃 (𝑑)} ∈ Θ𝑑 with diameter𝐷1 ≥ max𝑖, 𝑗 ∥𝜃 (𝑖)−
𝜃 ( 𝑗)∥1. Let ℓ1, . . . , ℓ𝑇 : Θ→ R be an arbitrary sequence of convex differentiable losses with bounded

gradient max𝜃 ∈Θ ∥∇ℓ𝑡 (𝜃 )∥∞ ≤ 𝐺∞. Then, EWA applied with 𝑔𝑡 = ∇ℓ̃𝑡 where ℓ̃𝑡 : 𝑝 ↦→ ℓ𝑡

(∑𝑑
𝑖=1 𝑝 (𝑖)𝜃 (𝑖)

)
achieves the regret bound

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − min
𝜃 ∈Conv(𝑆 )

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤ 2𝐺∞𝐷1
√︁
𝑇 log𝑑 ,

where 𝜃𝑡 =
∑𝑑
𝑘=1 𝑝𝑡 (𝑘)𝜃 (𝑘)
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Such a trick can be used for instance to competewith the ℓ1-balls using 𝑆 = {𝜃 ∈ R𝑑 : ∥𝜃 ∥1 = 𝑅, ∥𝑥 ∥0 = 1}.
Since ℓ𝑝-balls are contained into the ℓ1-ball (of possibly larger radius depending on 𝑝) this can also be
used to compete against any ℓ𝑝-ball for 𝑝 ≥ 1. This trick was introduced by Kivinen and Warmuth
[1997] for the EG± forecaster.
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4 Adversarial Bandits

4 Adversarial Bandits

In previous chapters, we considered the full-information feedback and the bandit feedback with stochas-
tic loss functions. In full information with finite decision set Θ = [𝐾] def

= {1, . . . , 𝐾}, we saw the Random
Exponentially Weighted Average (EWA) forecaster. It is defined as

𝑝𝑡 (𝑘) =
𝑒−𝜂

∑𝑡−1
𝑠=1 ℓ𝑠 (𝑘 )∑𝐾

𝑗=1 𝑒
−𝜂∑𝑡−1

𝑠=1 ℓ𝑠 ( 𝑗 )
. (EWA)

and draws 𝜃𝑡 = 𝑘 with probability 𝑝𝑡 (𝑘). If −𝜂ℓ𝑡 ( 𝑗) ≤ 1 (see the proof of EWA in first lecture), it satisfies
the upper-bound:

𝑇∑︁
𝑡=1

𝑝𝑡 · ℓ𝑡 − min
1≤ 𝑗≤𝐾

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑗) ≤ 𝜂
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)ℓ𝑡 (𝑘)2 +
log𝐾
𝜂

. (∗)

Since the decision 𝜃𝑡 is random, we assume that ℓ𝑡 cannot depend on 𝜃𝑡 but may depend on past
information 𝜎 (𝑝1, ℓ1, 𝑥1, . . . , 𝑥𝑡−1, 𝑝𝑡 ). The above bound can be converted into a bound on the expected
regret for well-calibrated learning rate 𝜂

E
[
𝑅𝑇

]
= E

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) − min
𝑘∈[𝐾 ]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘)
]
≤ 2

√︁
𝑇 log𝐾 .

In this chapter, we will see adversarial bandits: that is bandit feedback (only ℓ𝑡 (𝜃𝑡 ) is observed at the end
of round 𝑡 by the player) with an adversarial sequence of loss function ℓ𝑡 (i.e., no stochastic assumptions).
Note that we turn back to losses instead of rewards but we will come back to rewards whenever it
makes the proof easier. Remember that the lower-bound on the regret in the worst-case is of order
𝑂 (
√
𝑇𝐾).

4.1 Adversarial multi-armed bandits

We consider Setting 1.1 with bandit feedback, finite decision spaceΘ = [𝐾] def
= {1, . . . , 𝐾} and adversarial

losses. To emphasize that the action is in [𝐾], we denote by 𝑘𝑡 the action chosen by the player (instead of
𝜃𝑡 ). We do not assume the loss functions ℓ𝑡 to be linear nor convex (the decision space is not). Similarly
to Random EWA the chosen action 𝑘𝑡 ∈ [𝐾] is sampled randomly from a distribution 𝑝𝑡 chosen at
round 𝑡 by the player. We will provide an algorithm called Exp3 inspired by EWA.

4.1.1 Pseudo-regret bound

Let us denote the regret with respect to action 𝑘 ∈ [𝐾] by

𝑅𝑇 (𝑘)
def
=

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘) .
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Instead of minimizing the expected regret E[𝑅𝑇 ] = E[max𝑘 𝑅𝑇 (𝑘)] , we will start with an easier objective,
the pseudo-regret defined as

𝑅𝑇
def
= max

𝑘∈[𝐾 ]
E
[
𝑅𝑇 (𝑘)

]
= max
𝑘∈[𝐾 ]

E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘)
]
. (pseudo regret)

It is worth pointing out that the expectations are taken with respect to the randomness of the algorithm:
the decisions 𝑘𝑡 are random. We can distinguish two types of adversaries:

– oblivious adversary: all the loss functions ℓ1, . . . , ℓ𝑡 are chosen in advance before the game starts
and do not depend on the past player decisions 𝑘1, . . . , 𝑘𝑇 . In this case, the losses ℓ𝑡 (𝑘) are
determinist and there is thus equality: 𝑅𝑇 = E[𝑅𝑇 ].

– adaptive adversary: the loss function ℓ𝑡 at round 𝑡 ≥ 1 may depend on past information
𝜎 (𝑘1, . . . , 𝑘𝑡−1). It is thus random. By Jensen’s inequalitymax𝑘∈[𝐾 ] E

[
𝑅𝑇 (𝑘)

]
≤ E

[
max𝑘∈[𝐾 ] 𝑅𝑇 (𝑘)

]
and thus 𝑅𝑇 ≤ E[𝑅𝑇 ].

The EXP3 algorithm Ideally, we would like to reuse our algorithm EWA that assigned weights

∀𝑘 ∈ [𝐾], 𝑝𝑡 (𝑘) =
𝑒−𝜂

∑𝑡−1
𝑠=1 ℓ𝑠 (𝑘 )∑𝐾

𝑗=1 𝑒
−𝜂∑𝑡

𝑠=1 ℓ𝑠 ( 𝑗 )
. (EWA)

Unfortunately this is not possible since the player does not observe ℓ𝑡 (𝑘) for 𝑘 ≠ 𝑘𝑡 . The high-level idea
of Exp3 is to replace ℓ𝑡 (𝑘) with an unbiased estimate that is observed by the player. A first idea would
be to use ℓ𝑡 (𝑘) if we observe it and 0 otherwise:

𝑔𝑡 (𝑘) =
{
ℓ𝑡 (𝑘) if 𝑘 = 𝑘𝑡 ← i.e., decision 𝑘 is observed
0 otherwise .

However, this estimate is biased:

E𝑘𝑡∼𝑝𝑡
[
𝑔𝑡 (𝑘𝑡 )

]
= 𝑝𝑡 (𝑘)ℓ𝑡 (𝑘) ≠ ℓ𝑡 (𝑘) .

In other words, the actions that are less likely to be chosen by the algorithm (small weight 𝑝𝑡 (𝑘)) are
more likely to be unobserved and incur 0 loss. We need to correct this phenomenon. Therefore we
choose

𝑔𝑡 (𝑘) =
ℓ𝑡 (𝑘)
𝑝𝑡 (𝑘)

1{𝑘 = 𝑘𝑡 } , (4.1)

which leads to the algorithm EXP3 detailed below.

EXP3
Parameter: 𝜂 > 0
Initialize: 𝑝1 =

( 1
𝐾
, . . . , 1

𝐾

)
For 𝑡 = 1, . . . ,𝑇

– draw 𝑘𝑡 ∼ 𝑝𝑡 ; incur loss ℓ𝑡 (𝑘𝑡 ) and observe ℓ𝑡 (𝑘𝑡 ) ∈ [0, 1];
– update for all 𝑘 ∈ {1, . . . , 𝐾}

𝑝𝑡+1(𝑘) =
𝑒−𝜂

∑𝑡
𝑠=1 𝑔𝑠 (𝑘 )∑𝐾

𝑗=1 𝑒
−𝜂∑𝑡

𝑠=1 𝑔𝑠 ( 𝑗 )
, where 𝑔𝑠 (𝑘) =

ℓ𝑠 (𝑘)
𝑝𝑠 (𝑘)

1{𝑘 = 𝑘𝑠 }
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Then applying the Inequality (∗) for EWA with the substituted losses 𝑔𝑡 , we get the following theorem.

Theorem 4.1

Let 𝑇 ≥ 1. The pseudo-regret of EXP3 run with 𝜂 =

√︃
log𝐾
𝐾𝑇

is upper-bounded as:

𝑅𝑇 ≤ 2
√︁
𝐾𝑇 log𝐾 .

Proof. Apply EWA to the estimated losses 𝑔𝑡 ( 𝑗) that are completely observed (nonnegative but not
bounded), we get from Inequality (∗) and taking the expectation:

E

[
𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ − min

𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
≤ log𝐾

𝜂
+ 𝜂

𝑇∑︁
𝑡=1

E
[
⟨𝑝𝑡 , 𝑔𝑡 ⟩2

]
. (4.2)

Now we compute the expectations. Denote by F𝑡−1
def
= 𝜎 (𝑝1, ℓ1, 𝑘1, . . . , 𝑘𝑡−1, 𝑝𝑡 , ℓ𝑡 ) the past information

available at round 𝑡 for the adversary (which cannot use the randomness of 𝑘𝑡 but can use 𝑝𝑡 ). Note
that ℓ𝑡 and 𝑝𝑡 are F𝑡−1-measurable by assumption. We have

∀𝑗 ∈ [𝐾] E
[
𝑔𝑡 ( 𝑗)

���F𝑡−1
]
= E

[ ℓ𝑡 ( 𝑗)
𝑝𝑡 ( 𝑗)

1{ 𝑗 = 𝑘𝑡 }
���F𝑡−1

]
=

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)
ℓ𝑠 ( 𝑗)
𝑝𝑡 ( 𝑗)

1{ 𝑗 = 𝑘} = ℓ𝑡 ( 𝑗)

thus the estimated losses are unbiased E
[
𝑔𝑡 ( 𝑗)

]
= E

[
ℓ𝑡 ( 𝑗)

]
and

E
[
⟨𝑝𝑡 , 𝑔𝑡 ⟩

]
= E

[ 𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)𝑔𝑡 ( 𝑗)
]
= E

[ 𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)E
[
𝑔𝑡 ( 𝑗)

���F𝑡−1
] ]

= E
[ 𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)ℓ𝑡 ( 𝑗)
]
= E

[
E
[
ℓ𝑡 (𝑘𝑡 )

��F𝑡−1
] ]

= E
[
ℓ𝑡 (𝑘𝑡 )

]
.

Therefore, we can lower-bound the left-hand side:

E
[ 𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ − min

𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
≥ max

𝑗∈[𝐾 ]
E
[ 𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ −

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]

= max
𝑗∈[𝐾 ]

E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑗)
]
= 𝑅𝑇 .

On the other hand, the expectation of the right-hand side satisfies

E
[
⟨𝑝𝑡 , 𝑔𝑡 ⟩2

]
= E

[ 𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)𝑔𝑡 ( 𝑗)2
]
= E

[ 𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗) E
[
𝑔𝑡 ( 𝑗)2

���F𝑡−1
] ]

= E
[ 𝐾∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑝𝑡 ( 𝑗)𝑝𝑡 (𝑘)
( ℓ𝑡 ( 𝑗)
𝑝𝑡 ( 𝑗)

1{ 𝑗 = 𝑘}
)2

]
= E

[ 𝐾∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)
ℓ𝑡 ( 𝑗)2
𝑝𝑡 ( 𝑗)

1{ 𝑗 = 𝑘}
]
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= E
[ 𝐾∑︁
𝑗=1

ℓ𝑡 ( 𝑗)2
]
≤ 𝐾 .

Substituting into Inequality (4.2) yields

𝑅𝑇 ≤
log𝐾
𝜂
+ 𝜂𝐾𝑇 .

and optimizing 𝜂 =
√︁
𝐾𝑇 /(log𝐾) concludes. □

The issue with the above regret bound is that it bounds the pseudo-regret and not the expected regret.
This is because we have

E
[

min
𝑗

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
≤ min

𝑗
E
[ 𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
= min
𝑗∈[𝐾 ]

E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑗)
]

but not

E
[

min
𝑗

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
≰ E

[
min
𝑗

𝑇∑︁
𝑡=1

ℓ𝑡 ( 𝑗)
]
. (4.3)

Hence, controlling the cumulative loss agains the best estimated action only controls the pseudo regret
and not the true regret.

4.1.2 High probability bound on the regret

Gains versus losses In this part, we will switch the analysis from losses ℓ𝑡 (𝑘) to gains 𝑔𝑡 (𝑘) =
1 − ℓ𝑡 (𝑘) ∈ [0, 1] because the core idea of the next algorithm is easier to see with gains. Remark that
the loss and gain versions are symmetric via the transformation 𝑔𝑡 (𝑘) = 1 − ℓ𝑡 (𝑘). The regret in terms
of gains is defined as

𝑅𝑇
def
= max

𝑘∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘) −
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘𝑡 ) .

Using EWA with full information from (∗), if 𝜂𝑔𝑡 (𝑘) ≤ 1, we also have for gains the inequality

max
1≤ 𝑗≤𝐾

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) −
𝑇∑︁
𝑡=1
⟨𝑝𝑡 , 𝑔𝑡 ⟩ ≤ 𝜂

𝑇∑︁
𝑡=1

𝑝𝑡 · 𝑔2
𝑡 +

log𝐾
𝜂

, where 𝑝𝑡 (𝑘) =
𝑒𝜂

∑𝑡−1
𝑠=1 𝑔𝑠 (𝑘 )∑𝐾

𝑗=1 𝑒
𝜂
∑𝑡−1

𝑠=1 𝑔𝑠 ( 𝑗 )
. (4.4)

High-level idea of EXP3.P The high-level idea of the next algorithm is to ensure that the estimators
𝑔𝑡 (𝑘) of the gains satisfy

E

[
max
𝑗

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]
≥ E

[
max
𝑗

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗)
]

(4.5)

so that controlling the performance with respect to the estimated gains (left-hand side) also controls the
performance with respect to the true gains (right-hand side). This was not the case of the estimators
used for EXP3 (see (4.3)). To ensure (4.5), we add a bias term 𝛽 to the estimators 𝑔𝑡 (𝑘) as follows:

𝑔𝑡 (𝑘)
def
=
𝑔𝑡 (𝑘)1{𝑘 = 𝑘𝑡 } + 𝛽

𝑝𝑡 (𝑘)
(4.6)
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In contrary to (4.1), the estimator is indeed biased

E
[
𝑔𝑡 (𝑘)

��F𝑡−1
]
= 𝑔𝑡 (𝑘) +

𝛽

𝑝𝑡 (𝑘)
, (4.7)

where we recall that F𝑡−1
def
= 𝜎

(
𝑝1, 𝑘1, 𝑔1, . . . , 𝑘𝑡−1, 𝑝𝑡 , 𝑔𝑡 ) contains the information up to time 𝑡 available

to the environment. We have the following Lemma:

Lemma 4.2
For any 𝛿 > 0, with probability 1 − 𝛿 and 𝛽 ∈ (0, 1),

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≥
𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) −
log(1/𝛿)

𝛽
.

Proof. Let 𝛽 ∈ (0, 1), from Markov’s inequality, we have

P
( 𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≥
𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) −
log(1/𝛿)

𝛽

)
= P

(
exp

(
𝛽

𝑇∑︁
𝑡=1

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )
≥ 𝛿−1

)
≤ 𝛿E

[
exp

(
𝛽

𝑇∑︁
𝑡=1

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )]
.

It only remains to upper-bound the expectation in the right-hand side by 1, which we do now. Since
𝛽 ∈ (0, 1) and 𝑔𝑡 ( 𝑗) ≥ 𝛽/𝑝𝑡 ( 𝑗), we have 𝛽 (𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) + 𝛽/𝑝𝑡 ( 𝑗)) ≤ 1. Therefore, we can use the
inequality 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2 for 𝑥 ≤ 1, which entails

E
[

exp
(
𝛽
(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )����F𝑡−1

]
= E

[
exp

(
𝛽

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) +

𝛽

𝑝𝑡 ( 𝑗)

))����F𝑡−1

]
exp

(
− 𝛽2

𝑝𝑡 ( 𝑗)

)
≤ E

[(
1 + 𝛽

�����������(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) +

𝛽

𝑝𝑡 ( 𝑗)

)
+ 𝛽2

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) +

𝛽

𝑝𝑡 ( 𝑗)

)2
)����F𝑡−1

]
𝑒
− 𝛽2

𝑝𝑡 ( 𝑗 )

(4.7)
=

(
1 + 𝛽2E

[(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) +

𝛽

𝑝𝑡 ( 𝑗)

)2
����F𝑡−1

] )
𝑒
− 𝛽2

𝑝𝑡 ( 𝑗 )

where the last equality is by (4.7) and because 𝑝𝑡 ( 𝑗) is F𝑡−1-measurable. Now,

E
[(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗) +

𝛽

𝑝𝑡 ( 𝑗)

)2
����F𝑡−1

]
= Var

(
𝑔𝑡 ( 𝑗)

���F𝑡−1
)
= Var

(𝑔𝑡 ( 𝑗)1{ 𝑗 = 𝑘𝑡 }
𝑝𝑡 ( 𝑗)

���F𝑡−1
)

≤ E

[(
𝑔𝑡 ( 𝑗)1{ 𝑗 = 𝑘𝑡 }

𝑝𝑡 ( 𝑗)

)2 ����F𝑡−1

]
≤ E

[
1{ 𝑗 = 𝑘𝑡 }
𝑝𝑡 ( 𝑗)2

����F𝑡−1

]
=

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)1{ 𝑗 = 𝑘}
𝑝𝑡 ( 𝑗)2

=
1

𝑝𝑡 ( 𝑗)
.

Substituting into the previous inequality and using 1 + 𝑥 ≤ 𝑒𝑥 , it yields

E
[

exp
(
𝛽
(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )����F𝑡−1

]
≤

(
1 + 𝛽2

𝑝𝑡 ( 𝑗)

)
𝑒−𝛽

2/𝑝𝑡 ( 𝑗 ) ≤ 1 .

The proof is concluded by induction
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E
[

exp
(
𝛽

𝑇∑︁
𝑡=1

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )]
= E

[
E
[

exp
(
𝛽
(
𝑔𝑇 ( 𝑗) − 𝑔𝑇 ( 𝑗)

) )����F𝑇−1

]
︸                                      ︷︷                                      ︸

≤1

exp
(
𝛽

𝑇−1∑︁
𝑡=1

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )]

≤ E
[

exp
(
𝛽

𝑇−1∑︁
𝑡=1

(
𝑔𝑡 ( 𝑗) − 𝑔𝑡 ( 𝑗)

) )]
≤ . . . ≤ 1 .

□

The issue with the estimators 𝑔𝑡 ( 𝑗) ∈ (0, +∞) defined in Equation (4.6) is that they might be unbounded
if the weights 𝑝𝑡 ( 𝑗) are close to zero. The condition 𝜂𝑔𝑡 ( 𝑗) ≤ 1 which appeared in the proof of EWA
cannot hold for any 𝜂 > 0. Remark that this was not a problem for EXP3 with the preceding choice (4.1)
because −𝜂𝑔𝑡 ( 𝑗) ≤ 1 (see the proof of EWA for details).

The next algorithm called EXP3.P, is close to EXP3 but ensures the weights do not vanish to zero by
adding an exploration parameter 𝛾 > 0.

EXP3.P
Parameters: 𝜂 > 0, 𝛽 ∈ (0, 1), 𝛾 ∈ (0, 1)
Initialize: 𝑝1 =

( 1
𝐾
, . . . , 1

𝐾

)
For 𝑡 = 1, . . . ,𝑇

– draw𝑘𝑡 ∼ 𝑝𝑡 ; receive gain𝑔𝑡 (𝑘𝑡 ) = 1−ℓ𝑡 (𝑘𝑡 ) and observe𝑔𝑡 (𝑘𝑡 ) ∈ [0, 1];
– update for all 𝑘 ∈ {1, . . . , 𝐾}

𝑝𝑡+1(𝑘) = (1 − 𝛾)
𝑒𝜂

∑𝑡
𝑠=1 𝑔𝑠 (𝑘 )∑𝐾

𝑗=1 𝑒
𝜂
∑𝑡

𝑠=1 𝑔𝑠 ( 𝑗 )
+ 𝛾
𝐾
,

where 𝑔𝑠 (𝑘) = 𝑔𝑠 (𝑘 )1{𝑘=𝑘𝑠 }+𝛽
𝑝𝑠 (𝑘 ) .

The weights 𝑝𝑡 (𝑘) of EXP3.P are necessary larger than 𝛾/𝐾 and thus |𝜂𝑔𝑡 ( 𝑗) | ≤ 1 as soon as 𝜂 (1 +
𝛽)𝐾/𝛾 ≤ 1. We get the following high-probability bound on the regret.

Theorem 4.3
For well-chosen parameters 𝛾 ∈ (0, 1), 𝛽 ∈ (0, 1) and 𝜂 > 0 satisfying 𝜂 (1 + 𝛽)𝐾/𝛾 ≤ 1, for any 𝛿 > 0,
the EXP3.P algorithm achieves

𝑅𝑇 ≤ 6
√︁
𝑇𝐾 log𝐾 +

√︄
𝑇𝐾

log𝐾 log(1/𝛿) .

with probability at least 1 − 𝛿 .

Remark that the above bound leads to a bound on the expected regret, with the choice 𝛿 = 1/𝑇 it yields

E
[
𝑅𝑇 ] ≤ 6

√︁
𝑇𝐾 log𝐾 +

√︄
𝑇𝐾

log𝐾 log(𝑇 ) + 1

The logarithmic dependency on 𝑇 can even be removed using E[𝑋 ] =
∫ ∞

0 P(𝑋 ≥ 𝜀)𝑑𝜀.
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Proof of Theorem 4.3. Defining the weights that would assign EXP3,

𝑞𝑡 ( 𝑗)
def
=

𝑒𝜂
∑𝑡−1

𝑠=1 𝑔𝑠 ( 𝑗 )∑𝐾
𝑘=1 𝑒

𝜂
∑𝑡−1

𝑠=1 𝑔𝑠 (𝑘 )
,

we get from Inequality (4.4) applied with 𝑔𝑡 ( 𝑗),

max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤
𝑇∑︁
𝑡=1

𝑞𝑡 · 𝑔𝑡 + 𝜂
𝑇∑︁
𝑡=1

𝑞𝑡 · 𝑔2
𝑡 +

log𝐾
𝜂

.

where we used 𝜂𝑔𝑡 ( 𝑗) ≤ 1 because 𝜂 (1 + 𝛽)𝐾/𝛾 ≤ 1. Now, we use that 𝑝𝑡
def
= (1 − 𝛾)𝑞𝑡 + 𝛾/𝐾 , which

entails 𝑞𝑡 = (𝑝𝑡 − 𝛾/𝐾)/(1 − 𝛾) ≤ 𝑝𝑡/(1 − 𝛾). Substituting into the above inequality

(1 − 𝛾) max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤
𝑇∑︁
𝑡=1

𝑝𝑡 · 𝑔𝑡 + 𝜂
𝑇∑︁
𝑡=1

𝑝𝑡 · 𝑔2
𝑡 +

log𝐾
𝜂

. (4.8)

But by definition of 𝑔𝑡 ,

𝑝𝑡 · 𝑔𝑡 =
𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)𝑔𝑡 ( 𝑗) =
𝐾∑︁
𝑗=1

(
𝑔𝑡 ( 𝑗)1{ 𝑗 = 𝑘𝑡 } + 𝛽

)
= 𝑔𝑡 (𝑘𝑡 ) + 𝐾𝛽 .

and since 𝑝𝑡 ( 𝑗)𝑔𝑡 ( 𝑗) ≤ (1 + 𝛽),

𝑇∑︁
𝑡=1

𝑝𝑡 · 𝑔2
𝑡 ≤ (1 + 𝛽)

𝐾∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤ 𝐾 (1 + 𝛽) max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤
𝛾

𝜂
max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) .

Therefore, substituting into Inequality (4.8) gives

(1 − 𝛾) max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘𝑡 ) + 𝐾𝛽𝑇 + 𝛾 max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) +
log𝐾
𝜂

,

where we used (1 + 𝛽)𝐾 ≤ 𝛾/𝜂. Reorganizing, we get

(1 − 2𝛾) max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) ≤
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘𝑡 ) + 𝐾𝛽𝑇 +
log𝐾
𝜂

.

Using Lemma 4.2 together with a union bound (to have it for all 𝑗 ∈ [𝐾]), we have with probability 1−𝛿

(1 − 2𝛾)
(

max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) −
log(𝐾/𝛿)

𝛽

)
≤

𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘𝑡 ) + 𝐾𝛽𝑇 +
log𝐾
𝜂

,

and thus reorganizing and choosing 𝛾 def
= 2𝜂𝐾 ≥ 𝜂 (1 + 𝛽)𝐾 ,

max
𝑗∈[𝐾 ]

𝑇∑︁
𝑡=1

𝑔𝑡 ( 𝑗) −
𝑇∑︁
𝑡=1

𝑔𝑡 (𝑘𝑡 ) ≤ 𝐾𝛽𝑇 +
log𝐾
𝜂
+ log(𝐾/𝛿)

𝛽
+ 4𝜂𝐾𝑇 .

The proof is concluded by optimizing 𝜂 def
= (1/2)

√︁
(log𝐾)/𝐾𝑇 and 𝛽 def

=
√︁
(log𝐾)/(𝐾𝑇 ). □
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4.2 Contextual adversarial multi-armed bandits

Here, we consider the adversarial bandit framework in which the learner has access to some external
information (context) before making its decision. We turn back to the loss version of the game.

4.2.1 Adversarial multi-armed bandits with experts

We now consider prediction with expert advice in the bandit framework. The setting is the same as
the one described in Figure 1.1, but at the beginning of each round 𝑡 ≥ 1, some experts 𝑖 = 1, . . . , 𝑁
propose recommendations ℎ𝑡 (𝑖) ∈ [𝐾]. These recommendations may be random and may depend on
past actions 𝑘𝑠 , 𝑠 ≤ 𝑡 − 1 and past observations ℓ𝑠 (𝑘𝑠). The loss of each expert is given by the loss of the
chosen decision ℓ𝑡

(
ℎ𝑡 (𝑖)

)
but only ℓ𝑡 (𝑘𝑡 ) is observed by the learner. The goal of the learner is then to be

competitive with the best expert on a long run. To do so, it minimizes the pseudo-regret

𝑅
exp
𝑇

def
= max

𝑖=1,...,𝑁
E

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡
(
ℎ𝑡 (𝑖)

) ]
with respect to the experts. In order to bound the pseudo-regret, one could consider experts as the set
of arms and use EXP3. This would give a bound of order

√︁
𝑇𝑁 log𝑁 . However it does not take into

account the information on the reward of all experts that choose the same action ℎ𝑡 (𝑖) = 𝑘𝑡 .

EXP4
Parameter: 𝜂 > 0
Initialize: 𝑞1 =

( 1
𝑁
, . . . , 1

𝑁

)
.

For each round 𝑡 = 1, . . . , 𝑛
1. Get expert advice ℎ𝑡 (1), . . . , ℎ𝑡 (𝑁 ) ∈ [𝐾]
2. Draw an expert 𝑖𝑡 with probability distribution 𝑞𝑡 ∈ Δ𝑁
3. Choose decision 𝑘𝑡 = ℎ𝑡 (𝑖𝑡 )
4. Compute the estimated loss for each decision

𝑔𝑡 (𝑘) =
ℓ𝑡 (𝑘)
𝑝𝑡 (𝑘)

1{𝑘 = 𝑘𝑡 } ,

where 𝑝𝑡
def
=

∑𝑁
𝑖=1 𝑞𝑡 (𝑖)𝛿ℓ𝑡 (𝑖 ) ∈ Δ𝐾 .

5. Compute the estimated loss of the experts component-wise 𝑔𝑡 (ℎ𝑡 (𝑖))
6. Update the probability distribution over the experts component-wise

𝑞𝑡+1(𝑖) =
exp

(
− 𝜂∑𝑡

𝑠=1 𝑔𝑠
(
ℎ𝑠 (𝑖)

) )
∑𝑁
𝑗=1 exp

(
𝜂
∑𝑡
𝑠=1 𝑔𝑠

(
ℎ𝑠 ( 𝑗)

) ) , ∀1 ≤ 𝑖 ≤ 𝑁 .

Theorem 4.4
EXP4 with 𝜂 =

√︁
log𝑁 /(𝐾𝑇 ) satisfies 𝑅exp

𝑇
≤ 2

√︁
𝑇𝐾 log𝑁 .

Similarly to the variant EXP3.P, we can define a variant EXP4.P to bound the regret with high probability
(and thus the expected regret). Furthermore, the above algorithm (and theorem) can be extended to
the case where expert advice are distributions ℎ𝑡 (𝑖) ∈ Δ𝐾 . The algorithm is the same by sampling 𝑘𝑡
according to ℎ𝑡 (𝑖𝑡 ) and assigning to expert 𝑖 the loss

∑𝐾
𝑘=1 ℎ𝑡 (𝑖) (𝑘)𝑔𝑡 (𝑘).
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Proof. We can apply the analysis of EXP to a learner using distribution 𝑞𝑡 over 𝑁 actions (here experts)
with (full-information) losses 𝑔𝑡

(
ℎ𝑡 (𝑖)

)
for 𝑖 ∈ {1, . . . , 𝑁 }. We get from Inequality (∗)

E

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖) · 𝑔𝑡
(
ℎ𝑡 (𝑖)

)
− min

1≤ 𝑗≤𝑁

𝑇∑︁
𝑡=1

𝑔𝑡
(
ℎ𝑡 ( 𝑗)

) ]
≤ 𝜂

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

E
[
𝑞𝑡 (𝑖)𝑔𝑡

(
ℎ𝑡 (𝑖)

)2
]
+ log𝑁

𝜂
. (4.9)

Remark that 𝑘𝑡 = ℎ𝑡 (𝑖) with probability 𝑞𝑡 (𝑖) so that, 𝑘𝑡 follows the distribution 𝑝𝑡
def
=

∑𝑁
𝑖=1 𝑞𝑡 (𝑖)𝛿ℎ𝑡 (𝑖 )

knowing the past information F𝑡−1
def
= 𝜎 (ℎ1, 𝑖1, 𝑘1, . . . , 𝑖𝑡−1, 𝑘𝑡−1, ℎ𝑡 ). Now, similarly to the proof of

EXP3, we compute the expectations. We have for all 𝑘 ∈ [𝐾] def
= {1, . . . , 𝐾}

E
[
𝑔𝑡 (𝑘)

���F𝑡−1
]
= E

[ ℓ𝑡 (𝑘)
𝑝𝑡 (𝑘)

1{𝑘 = 𝑘𝑡 }
���F𝑡−1

]
=

𝐾∑︁
𝑗=1

𝑝𝑡 ( 𝑗)
ℓ𝑡 (𝑘)
𝑝𝑡 (𝑘)

1{𝑘 = 𝑗} = ℓ𝑡 (𝑘) ,

and thus for all 𝑖 ∈ {1, . . . , 𝑁 }
E
[
𝑔𝑡

(
ℎ𝑡 (𝑖)

) ���F𝑡−1
]
= ℓ𝑡

(
ℎ𝑡 (𝑖)

)
, (4.10)

and

E

[
𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖) · 𝑔𝑡
(
ℎ𝑡 (𝑖)

) ����F𝑡−1

]
=

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)E
[
𝑔𝑡

(
ℎ𝑡 (𝑖)

) ���F𝑡−1
]
=

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)ℓ𝑡
(
ℎ𝑡 (𝑖)

)
= E

[
ℓ𝑡
(
ℎ𝑡 (𝑖𝑡 )

) ��F𝑡−1
]
= E

[
ℓ𝑡 (𝑘𝑡 )

��F𝑡−1
]
. (4.11)

Furthermore,

E
[
𝑔𝑡

(
ℎ𝑡 (𝑖)

)2
���F𝑡−1

]
=

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)
(
ℓ𝑡
(
ℎ𝑡 (𝑖)

)
𝑝𝑡

(
ℎ𝑡 (𝑖)

) )2

1{𝑘 = ℎ𝑡 (𝑖)} =
ℓ𝑡
(
ℎ𝑡 (𝑖)

)2

𝑝𝑡
(
ℎ𝑡 (𝑖)

) ≤ 1
𝑝𝑡

(
ℎ𝑡 (𝑖)

) ,
and
𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)E
[
𝑔𝑡

(
ℎ𝑡 (𝑖)

)2
���F𝑡−1

]
≤

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)
𝑝𝑡 (ℎ𝑡 (𝑖))

= E
[

1
𝑝𝑡 (ℎ𝑡 (𝑖𝑡 ))

����F𝑡−1

]
= E

[
1

𝑝𝑡 (𝑘𝑡 )

����F𝑡−1

]
=

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑘)
𝑝𝑡 (𝑘)

= 𝐾 .

(4.12)

Substituting (4.10), (4.11), and (4.12) into Inequality (4.9) and lower-bounding the expected regret with
the pseudo-regret, we get

𝑅
exp
𝑇

def
= max

1≤𝑖≤𝑁
E

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) − ℓ𝑡
(
ℎ𝑡 (𝑖)

) ]
(4.10),(4.11)

= max
1≤𝑖≤𝑁

E

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)𝑔𝑡
(
ℎ𝑡 (𝑖)

)
− 𝑔𝑡

(
ℎ𝑡 (𝑖)

) ]
Jensen
≤ E

[
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑞𝑡 (𝑖)𝑔𝑡
(
ℎ𝑡 (𝑖)

)
− min

1≤𝑖≤𝑁
𝑔𝑡

(
ℎ𝑡 (𝑖)

) ]
(4.9)
≤ 𝜂

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

E
[
𝑞𝑡 (𝑖)𝑔𝑡

(
ℎ𝑡 (𝑖)

)2
]
+ log𝑁

𝜂

(4.12)
≤ 𝜂𝐾𝑇 + log𝑁

𝜂
.

Optimizing 𝜂 concludes the proof. □
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4.2.2 Adversarial multi-armed bandits with side information

A natural extension of the previous setting is by adding side (or contextual) information: this is
called contextual bandits. It arises in most applications such as recommendation systems or online
advertisement. The side information can then be the cookies of a new user to which we need to
recommend a product.

Assume that for each time step 𝑡 ≥ 1, before doing its prediction 𝑘𝑡 the learner observes a context 𝑥𝑡 in
a finite set X of contexts. The learner must than learn the best mapping 𝑔 : X → [𝐾] and is evaluated
with the contextual pseudo-regret:

𝑅X𝑇
def
= max

𝑔:X→[𝐾 ]
E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝑘𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡
(
𝑔(𝑥𝑡 )

) ]
.

Similarly, to the stochastic setting, if X is finite, a simple algorithm consists in running a different copy
𝐸𝑋𝑃3(𝑐) of EXP3 for each context 𝑐 ∈ X. We denote by X-EXP3 this algorithm. At each time step 𝑡 ≥ 1,
the learner uses 𝐸𝑋𝑃 (𝑥𝑡 ) to make the prediction. The following theorem follows from Theorem 4.1.

Theorem 4.5
The contextual pseudo-regret of X-EXP3 is upper-bounded as:

𝑅X𝑇 ≤ 2
√︁
𝑇 |X|𝐾 log𝐾 .

Proof. Applying the proof of the pseudo-regret bound of EXP3 for each instance 𝑥 ∈ X:

max
𝑗∈[𝐾 ]

E

[
𝑇∑︁
𝑡=1

(
ℓ𝑡 (𝑘𝑡 ) − ℓ𝑡 ( 𝑗)

)
1{𝑥𝑡 = 𝑥}

]
≤ 2

√︁
𝐾 (log𝐾)𝑇𝑥 ,

where 𝑇𝑥 =
∑𝑇
𝑡=1 1{𝑥𝑡 = 𝑥}. Summing over 𝑥 ∈ X,∑︁

𝑥∈X
max
𝑗∈[𝐾 ]

E

[
𝑇∑︁
𝑡=1

(
ℓ𝑡 (𝑘𝑡 ) − ℓ𝑡 ( 𝑗)

)
1{𝑥𝑡 = 𝑥}

]
≤ 2

∑︁
𝑥∈X

√︁
𝐾 (log𝐾)𝑇𝑥

Jensen
≤ 2

√︁
|X|𝐾 (log𝐾)𝑇

where the last inequality is by using the concavity of the square root together with
∑
𝑠∈X 𝑇𝑠 = 𝑇 . The

proof is concluded by remarking that the left-hand side is the contextual pseudo-regret. □

Similarly to the classical lower-bound 𝑂 (
√
𝑇𝐾), a lower-bound of order

√︁
|X|𝐾𝑇 holds under the

assumption that a significant proportion of the contexts are used at least a constant fraction of the 𝑇
rounds. The above bound is nice but the dependency |X| might be annoying if X is large.

Exercise 4.1. Generalize the above algorithm and upper-bound when the context-space is continuous and
the loss functions are 𝛽-Hölder in the contexts.

Competing against the best context set

In some cases, one may want to combine bandit algorithms. For example, we could have in hand
different context set X. For each of these sets X, we can bound the pseudo-regret 𝑅X

𝑇
using Theorem 4.5

with X-EXP3 of Section 4.2.2, but we would like to find the best set X. To do so, we may want to
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combine with EXP4 different instances of X-EXP3, each using its own context set X. We can then
combine the bounds of Theorem 4.4 and Theorem 4.5 to ensure we are competing with the best possible
context set X. In this case, each instance of X-EXP3 does not observe their own choice of action but the
action chosen by EXP4 which follows a different distribution. The bound of Theorem 4.4 is valid but
the regrets of the experts cannot be bounded using Theorem 4.5. It is however possible to use a variant
of EXP4 to combine bandit algorithms by adding an exploration parameter. We then lose however in
the rate of the regret bound which is then of order

max
X

𝑅X𝑇 ≤ O
(
𝑇 2/3 ( max |X|𝐾 log𝐾)1/3

√︁
log𝑀

)
where 𝑀 is the number of context sets X. We refer to Section 4.2.1 of Bubeck et al. [2012] for more
details on this application.

4.3 Online convex optimization with bandit feedback

In the previous sections, we saw how to deal with bandit feedback when the decision set is finite
Θ = [𝐾]. The goal of this section is to extend to bandit feedback the general framework of online
convex optimization of Figure 1.1 for any compact and convex decision space Θ ⊂ R𝑑 . Here, at each
round 𝑡 ≥ 1, the learner picks 𝜃𝑡 ∈ Θ and observes ℓ𝑡 (𝜃 ). When gradients are observed, one may choose
𝜃𝑡 by following online gradient descent (OGD):

𝜃𝑡+1 = ΠΘ(𝜃𝑡 − 𝜂∇ℓ𝑡 (𝜃𝑡 )) . (OGD)

Theorem 2.7 showed that the regret of OGD for well-chosen learning rate 𝜂 > 0 is upper-bounded as:

𝑅𝑇 =

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) ≤ 𝐷𝐺
√
𝑇 ,

where 𝐷 ≥ max𝜃,𝜃 ′∈Θ ∥𝜃 − 𝜃 ′∥ and 𝐺 ≥ max𝜃 ∈Θ ∥∇ℓ𝑡 (𝜃 )∥. Here, we aim at answering the following
question:

“How to adapt OGD to the bandit setting, when ℓ𝑡 (𝜃𝑡 ) is observed but not ∇ℓ𝑡 (𝜃𝑡 )?”

Similarly to EXP3, the idea is to replace the gradient in OGD with estimators. That is to try to find a
random variable 𝑔𝑡 that satisfies E

[
𝑔𝑡

]
≈ ∇ℓ𝑡 (𝜃𝑡 ) and which can be computed with the observation at

hand.

4.3.1 Estimating gradients from value observations

One-dimensional example. Let us first, consider the one-dimensional case, let ℓ : R → R be a
one-dimensional diffentiable loss function. Is it possible to design an estimator of ℓ ′(𝜃 ) by evaluating ℓ
in a single point? It turns out that this is the case. Indeed, the derivative in 𝜃 can be writen as

ℓ ′(𝜃 ) = lim
𝛿→0

ℓ (𝜃 + 𝛿) − ℓ (𝜃 − 𝛿)
2𝛿 .

Thus, denoting 𝜉 a Rademacher random variable (which equals 1 with probability 1/2 and −1 otherwise)
and defining 𝑔(𝜃 ) = 1

𝛿
𝜉ℓ (𝜃 + 𝜉𝛿), we have

E
[
𝑔(𝜃 )

]
=

1
2 ×

ℓ𝑡 (𝜃 + 𝛿)
𝛿

+ 1
2 ×
−ℓ𝑡 (𝜃 − 𝛿)

𝛿
≈ ℓ ′(𝜃 )
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if 𝛿 is sufficiently small. Therefore, for a small value of 𝛿 , 𝑔(𝜃 ) is approximatively an unbiased estimator
of ℓ ′(𝜃 ). Note that 𝑔(𝜃 ) can be computed by evaluating the function ℓ a single time at a random point
close to 𝜃 . On the other side, on may compute

Var
(
𝑔(𝜃 )

)
=

(
ℓ (𝜃 + 𝛿) + ℓ (𝜃 − 𝛿)

2𝛿

)2
≈ ℓ (𝜃 )

2

𝛿2 ,

which may explode as 𝛿 → 0. Thus, 𝛿 will need to be chosen carefully to optimize a bias-variance
trade-off.

Multi-dimensional case. We now formally extend the above point-wise estimator to the multi-
dimensional case. To do so, we first need to define ℓ̂𝑡 a smoothed version of the loss by: for all 𝜃 ∈ Θ

ℓ̂𝑡 (𝜃 ) = E𝑣
[
ℓ𝑡 (𝜃 + 𝛿𝑣)

]
,

where 𝑣 ∼ Unif(B) is a uniform random-variable over the Euclidean unit ball B := {𝑥 ∈ R𝑑 : ∥𝑥 ∥ ≤ 1}.
The following lemma follows from Lipschitzness of ℓ𝑡 , and states that ℓ𝑡 is a 𝛿𝐺-approximation of ℓ𝑡 .

Lemma 4.6
Let 𝛿 > 0. Then,

��ℓ̂𝑡 (𝜃 ) − ℓ𝑡 (𝜃 )�� ≤ 𝛿𝐺 for all 𝜃 ∈ R𝑑 .

Now, define the estimator

𝑔𝑡 =
𝑑

𝛿
ℓ𝑡 (𝜃𝑡 + 𝛿𝑢𝑡 )𝑢𝑡 with 𝑢𝑡 ∼ Unif(S) (4.13)

where S = {𝑥 ∈ R𝑑 : ∥𝑥 ∥ = 1} is the Euclidean unit sphere. Then, the following lemma states that 𝑔𝑡 is
an unbiased estimator of ℓ̂𝑡 .

Lemma 4.7
Let ℓ̂𝑡 (𝜃𝑡 ) = E𝑣

[
ℓ𝑡 (𝜃𝑡 + 𝛿𝑣)

]
with 𝑣 ∼ Unif(B) and 𝑔𝑡 = 𝑑

𝛿
ℓ𝑡 (𝜃𝑡 + 𝛿𝑢𝑡 )𝑢𝑡 with 𝑢𝑡 ∼ Unif(S). Then,

E𝑢
[
𝑔𝑡 ] = ∇ℓ̂𝑡 (𝜃𝑡 ) .

Proof. The proof is a consequence of Stokes’ theorem that states that for any continuously differentiable
function 𝑓 : R𝑑 → R, ∫

B
∇𝑓 (𝑥)𝑑𝑥 =

∫
S
𝑓 (𝑥)𝑥𝑑𝑥 ,

applied with 𝑓 : 𝑥 ↦→ ℓ𝑡 (𝜃𝑡 + 𝛿𝑥) and ∇𝑓 (𝑥) = 𝛿∇ℓ𝑡 (𝜃𝑡 + 𝛿𝑥 ). Denoting by 𝜇 the Lebesgue measure, we
then have

E𝑢 [𝑔𝑡 ] =
1

𝜇 (S)

∫
S

𝑑

𝛿
ℓ𝑡 (𝜃𝑡+𝛿𝑢)𝑢𝑑𝑢 =

𝑑

𝜇 (S)

∫
B
∇ℓ𝑡 (𝜃𝑡+𝛿𝑣)𝑑𝑣 =

𝑑𝜇 (B)
𝜇 (S) E𝑣

[
∇ℓ𝑡 (𝜃𝑡+𝛿𝑣)

]
=
𝑑𝜇 (B)
𝜇 (S) ∇ℓ̂𝑡 (𝜃𝑡 ) ,

where the last inequality is by intechanging the derivative and the integral. The proof is then completed
by noting that 𝑑𝜇 (B) = 𝜇 (S). □
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4.3.2 OGD with bandit feedback

Noting that the above estimator 𝑔𝑡 can be computed with a single evaluation of ℓ𝑡 at the random point
𝜃𝑡 + 𝛿𝑢𝑡 , we may define the Online Gradient Descent algorithm with bandit feedback.

Online Gradient Descent with bandit feedback (OGD without gradient)
Parameters: 𝜂 > 0 𝛿 > 0
Initialize: 𝜃1 ∈ Θ𝛿 arbitrarily chosen in Θ𝛿 :=

{
𝜃 ∈ Θ s.t. ∀𝑢 ∈ S, 𝜃 + 𝛿𝑢 ∈ Θ

}
For 𝑡 = 1, . . . ,𝑇

– Draw 𝑢𝑡 uniformly at random in the unit sphere.
– Set 𝜃𝑡 := 𝜃𝑡 + 𝛿𝑢𝑡 a random perturbation of the current point 𝜃𝑡
– Play 𝜃𝑡
– Incur and observe loss ℓ𝑡 (𝜃𝑡 ) ∈ [−1, 1]
– Estimate the gradient with

𝑔𝑡 := 𝑑

𝛿
ℓ𝑡 (𝜃𝑡 )𝑢𝑡

– Update
𝜃𝑡+1 = ΠΘ

(
𝜃𝑡 − 𝜂𝑔𝑡

)
.

where ΠΘ𝛿
is the Euclidean projection onto Θ𝛿 .

We have the following theorem.

Theorem 4.8
If the losses ℓ𝑡 are𝐺-Lipschitz and take values in [−𝐵, 𝐵], then OGD without gradient with parameters

𝛿 = min
{
𝐷, 1

2

√︃
𝑑𝐵𝐷
𝐺
𝑇 −1/4} and 𝜂 = 𝛿𝐷/(𝑑𝐵

√
𝑇 ) satisfies the expected regret bound

E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 )
]
≤ 2𝑑𝐵

√
𝑇 + 4

√
𝑑𝐵𝐺𝐷𝑇 3/4 .

The above regret bound is sub-optimal and more sophisticated algorithms achieve 𝑂 (
√
𝑇 ) but with

worse dependency on 𝑑 and higher computational cost.

Proof. We define

𝜃 ∗ = arg min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ) and 𝜃 ∗
𝛿
= ΠΘ𝛿

(𝜃 ∗) .

Then, by definition of Θ𝛿 :=
{
𝜃 ∈ Θ s.t. 𝜃 + 𝛿𝑢 ∈ Θ for all 𝑢 ∈ S

}
, we have



𝜃 ∗ − 𝜃 ∗
𝛿



 ≤ 𝛿 (left as
exercise). Thus, if the losses are 𝐺-Lipschitz

𝑅𝑇 := E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗)
]

≤ E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗𝛿 )
]
+ 𝛿𝑇𝐺 ← because ∥𝜃 ∗ − 𝜃 ∗

𝛿
∥ ≤ 𝛿
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≤ E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 ∗𝛿 )
]
+ 2𝛿𝑇𝐺 ← because ∥𝜃𝑡 − 𝜃𝑡 ∥ ≤ 𝛿

≤ E
[ 𝑇∑︁
𝑡=1

ℓ̂𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ̂𝑡 (𝜃 ∗𝛿 )
]
+ 4𝛿𝑇𝐺 ← because

��ℓ̂𝑡 (𝜃𝑡 ) − ℓ𝑡 (𝜃𝑡 )�� ≤ sup
∥𝑣 ∥≤1

|ℓ𝑡 (𝜃𝑡 + 𝛿𝑣) − ℓ𝑡 (𝜃𝑡 ) | ≤ 𝛿𝐺

(4.14)

where ℓ̂𝑡 (𝜃 ) = E𝑣
[
ℓ𝑡 (𝜃 + 𝛿𝑣)

]
with 𝑣 ∼ 𝑈𝑛𝑖 𝑓 (B) are the smoothed versions of the losses.

Now, recall that the algorithm runs OGD with 𝑔𝑡 in place of the gradients:

𝜃𝑡+1 ← ΠΘ𝛿
(𝜃𝑡 − 𝜂𝑔𝑡 )

Defining the pseudo-loss ℎ𝑡 (𝜃 ) = ℓ̂𝑡 (𝜃 ) + (𝑔𝑡 − ∇ℓ̂𝑡 (𝜃𝑡 ))⊤𝜃 , we can see that

∇ℎ𝑡 (𝜃𝑡 ) = ∇ℓ̂𝑡 (𝜃𝑡 ) + 𝑔𝑡 − ∇ℓ̂𝑡 (𝜃𝑡 ) = 𝑔𝑡 .

Therefore, the algorithm actually runs OGD on the losses ℎ𝑡 and thus satisfies the OGD regret bound
(see Theorem 2.7)

𝑇∑︁
𝑡=1

ℎ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℎ𝑡 (𝜃 ∗𝛿 ) ≤
𝐷2

2𝜂 +
𝜂

2

𝑇∑︁
𝑡=1
∥𝑔𝑡 ∥2 .

Furthermore, by construction of the gradient estimator, we have E𝑢𝑡
[
𝑔𝑡

]
= ∇ℓ̂𝑡 (𝜃𝑡 ), which yields

E𝑢𝑡
[
ℎ𝑡 (𝜃𝑡 )] = ℓ̂𝑡 (𝜃𝑡 ) and E𝑢𝑡

[
ℎ𝑡 (𝜃 ∗𝛿 )] = ℓ̂𝑡 (𝜃

∗
𝛿
) .

Thus taking the expectation in the previous regret bound entails

E
[ 𝑇∑︁
𝑡=1

ℓ̂𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℓ̂𝑡 (𝜃 ∗𝛿 )
]
= E

[ 𝑇∑︁
𝑡=1

ℎ𝑡 (𝜃𝑡 ) −
𝑇∑︁
𝑡=1

ℎ𝑡 (𝜃 ∗𝛿 )
]
≤ 𝐷

2

2𝜂 +
𝜂

2

𝑇∑︁
𝑡=1

E
[
∥𝑔𝑡 ∥2

]
. (4.15)

Combining the two bounds (4.14) and (4.15) that we have proved, we get

𝑅𝑇 ≤
𝐷2

2𝜂 +
𝜂

2

𝑇∑︁
𝑡=1

E
[
∥𝑔𝑡 ∥2

]
+ 4𝛿𝑇𝐺 .

Then, since |ℓ𝑡 (𝜃 ) | ≤ 𝐵 for all 𝜃 ∈ Θ,

∥𝑔𝑡 ∥2 =
(𝑑
𝛿
ℓ𝑡 (𝜃𝑡 )

)2
≤ 𝑑

2𝐵2

𝛿2 .

This finally yields the regret

𝑅𝑇 ≤
𝐷2

2𝜂 +
𝜂𝑑2𝐵2𝑇

2𝛿2 + 4𝛿𝐺𝑇 =
𝑑𝐵𝐷

𝛿

√
𝑇 + 4𝛿𝐺𝑇 ≤ 2𝑑𝐵

√
𝑇 + 4

√
𝑑𝐵𝐺𝐷𝑇 3/4

for the choices of 𝛿 and 𝜂. □
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Coordinate gradient descent. In some situations, the full gradient ∇ℓ𝑡 (𝜃𝑡 ) is too costly to be
computed at each step, and one only observes the gradient of a single coordinate 𝑘𝑡 ∼ Unif (𝑑). In this
case, one may use OGD (or OMD, or EG) with the gradient estimator

𝑔𝑡 = 𝑑∇ℓ𝑡 (𝜃𝑡 )𝑘𝑡𝑒𝑘𝑡 ,

where {𝑒𝑘 } are the elements of the canonical basis in R𝑑 . Here,

E𝑘𝑡 [𝑔𝑡 ] =
𝑑∑︁
𝑘=1

𝑑∇ℓ𝑡 (𝜃𝑡 )𝑘𝑒𝑘P(𝑘𝑡 = 𝑘) = ∇ℓ𝑡 (𝜃𝑡 ) ,

and

E𝑘𝑡
[
∥𝑔𝑡 ∥2

]
=

𝑑∑︁
𝑘=1

𝑑2∇ℓ𝑡 (𝜃𝑡 )2𝑘 ∥𝑒𝑘 ∥
2P(𝑘𝑡 = 𝑘) = 𝑑



∇ℓ𝑡 (𝜃𝑡 )∥2 ≤ 𝑑𝐺2 .

Then, following the proof of OGD, for the update rule 𝜃𝑡+1 = ΠΘ(𝜃𝑡 − 𝜂𝑔𝑡 ), we get the regret bound in
expectation

E[𝑅𝑇 ] = E
[ 𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃𝑡 ) −min
𝜃 ∈Θ

𝑇∑︁
𝑡=1

ℓ𝑡 (𝜃 )
]
≤ 𝜂𝑑

2𝐺2𝑇

2 + 𝐷
2

2𝜂 = 𝐺𝐷
√
𝑑𝑇 ,

where we optimized over 𝜂 = 𝐷/𝐺 (𝑑𝑇 )−1/2 in the last equality. The regret bound of OGD is deteriorated
by a factor

√
𝑑 compared to OGD with full gradient observation.
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5 Stochastic Multi-armed Bandits

5 Stochastic Multi-armed Bandits

During the last few chapters, we have reviewed the framework for comprehensive information. We
designed algorithms to minimize regret for the different decision spaces Θ and loss assumptions 𝑓𝑡 .
Most of the algorithms were based on variations in the exponentially weighted average forecaster or
online gradient descent. We also found some links with game theory, including the Blackwell approach,
two-player zero-sum games, and calibration.

In this chapter, we consider the bandit setting, when the player only observes the performance of 𝑓𝑡 (𝜃𝑡 )
but not 𝑓𝑡 (𝜃 ) for 𝜃 ≠ 𝜃𝑡 . We will start by providing fundamental results for stochastic bandits with
finitely many actions, also called 𝐾-armed bandits which basically corresponds to Θ = {1, . . . , 𝐾} and
i.i.d. loss functions 𝑓𝑡 . For a thorough introduction to stochastic bandits we refer the interested student
to the monographs Bubeck et al. [2012] or Lattimore and Szepesvári [2020].

5.1 Setting: stochastic bandit with finitely many actions

We state here the setting of stochastic bandits with finitely many actions (also called multi-armed
bandit) and fix notations that we will use.

A multi-armed bandit problem is a sequential decision problem defined by a finite set of actions
Θ

def
= {1, . . . , 𝐾} also called arms. We assume that there are 𝐾 unknown sequences 𝑋𝑖,1, 𝑋𝑖,2, . . . of

rewards in [0, 1] associated with each arm 𝑖 = 1, . . . , 𝐾 . At each round, the player makes a decision by
pulling an arm 𝑘𝑡 in Θ and observes the corresponding reward1 𝑋𝑘𝑡 ,𝑡 . The objective of the player is to
minimize his cumulative regret:

𝑅𝑇
def
= max

𝑘=1,...,𝐾

𝑇∑︁
𝑡=1

𝑋𝑘,𝑡 −
𝑇∑︁
𝑡=1

𝑋𝑘𝑡 ,𝑡 .

In stochastic bandits, we generally assume the sequences to be i.i.d. Each arm 𝑘 = 1, . . . , 𝐾 is associated
an unknown probability distribution 𝜈𝑘 over [0, 1] and 𝑋𝑘,𝑡 ∼ 𝜈𝑘 . We also denote

𝜇𝑘
def
= E[𝑋𝑘,𝑡 ], and 𝜇∗ ∈ arg max

𝑘=1,...,𝐾
{𝜇𝑘 } .

The player aims at finding the arm with the highest mean reward 𝜇𝑘 as quickly as possible. The setting
is summarized in Setting 5.1. Note that we retrieve the setting of online optimization (Setting 1.1) with
the notation 𝑋𝑘,𝑡

def
= 1 − 𝑓𝑡 (𝑘) with i.d.d. loss functions.

1In the bandit community, it is more common to consider rewards rather than losses.
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Unknown parameters: 𝐾 probability distributions 𝜈1, . . . , 𝜈𝐾 on [0, 1]
At each time step 𝑡 = 1, . . . ,𝑇

– the player chooses an action 𝑘𝑡 ∈ Θ = {1, . . . , 𝐾};
– given 𝑘𝑡 , the environment draws the reward 𝑋𝑘𝑡 ,𝑡 ∼ 𝜈𝑘𝑡 ;
– the player only observes the feedback 𝑋𝑘𝑡 ,𝑡 .

Setting 5.1: Setting of stochastic bandit with finitely many actions

Multi-armed bandits have several concrete historical applications in a variety of fields, including ad
placement, clinical trials, source routing or game AI. The name bandit refers to the “slot machine” in
casinos, and the bandit problem corresponds to a player that inserts coins into different machines
and tries to maximize his payoff. The finite arms bandit settings we consider are simple enough to be
analyzed and the algorithms can often be generalized to more realistic settings including for example
contextual bandits.

Remark. Assume that all arms 𝜈𝑘 ∼ B(1/2) for 𝑘 = 1, . . . , 𝐾 . Then, E[𝑋𝑘,𝑡 ] = 1/2 and E[𝑋𝑘𝑡 ,𝑡 ] = 1/2.
But because of fluctuations of random walks, the expected magnitude of the maximum rewards is of order

E
[

max
𝑘=1,...,𝐾

𝑇∑︁
𝑘=1

𝑋𝑘,𝑛

]
≈

√︁
𝑇 log𝐾 .

Therefore, in this case though all arms are optimal, the expected regret is of order
√︁
𝑇 log𝐾 . We will

thus consider a more quantity in the stochastic framework called the pseudo-regret which corresponds to
competing with the best action in expectation, rather than the optimal action on the sequence of realized
rewards.

Definition 5.1 Pseudo-regret
The pseudo-regret is defined as

𝑅𝑇
def
= 𝑇 𝜇∗ − E

[ 𝑇∑︁
𝑡=1

𝜇𝑘𝑡

]
,

where we recall 𝜇𝑘 = E[𝑋𝑘,𝑡 ].

Remark that the pseudo-regret is upper-bounded by the expected regret 𝑅𝑇 ≤ E
[
𝑅𝑇

]
. It is thus harder

to design algorithms for the true regret but we will focus here on the pseudo-regret.

Useful notation In the following, we will denote by 𝜇̂𝑘 (𝑠) the empirical mean of rewards obtained
after pulling arm 𝑘 𝑠 times. Let us also denote for all arms 𝑘 = 1, . . . , 𝐾 by

Δ𝑘
def
= 𝜇∗ − 𝜇𝑘 and 𝑁𝑘 (𝑡)

def
=

𝑡∑︁
𝑠=1

1𝑘𝑡=𝑘 ,

respectively the suboptimal gap of arm 𝑘 and the number of times the arm 𝑘 was pulled by the player
before time 𝑡 . Then, the pseudo-regret can be rewritten

𝑅𝑇 =

( 𝐾∑︁
𝑘=1

E
[
𝑁𝑘 (𝑡)

] )
𝜇∗ − E

( 𝐾∑︁
𝑘=1

𝑁𝑘 (𝑡)𝜇𝑘
)
=

𝐾∑︁
𝑘=1

Δ𝑘E
[
𝑁𝑘 (𝑡)

]
. (5.1)
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We recall Hoeffding’s inequality that will be used in the proofs. We will often use Azuma-Hoeffding’s
inequality which is a generalization of Hoeffding’s inequality to martingals.

Proposition 5.1 Hoeffding’s Inequality
If 𝑋1, . . . , 𝑋𝑛 are independent random variables almost surely in [𝑎, 𝑏] then for all 𝛿 ∈ (0, 1) we have

P

{
𝑛∑︁
𝑡=1

𝑋𝑘 − E
[ 𝑛∑︁
𝑡=1

𝑋𝑘

]
≥ (𝑏 − 𝑎)

√︂
𝑛

2 log 1
𝛿

}
≤ 𝛿 ,

or equivalently for all 𝜀 > 0

P

{
𝑛∑︁
𝑡=1

𝑋𝑘 − E
[ 𝑛∑︁
𝑡=1

𝑋𝑘

]
≥ 𝜀

}
≤ exp

(
− 2𝜀2

𝑛(𝑏 − 𝑎)2

)
.

5.2 Explore-Then-Commit (ETC)

Contrary to the full information we examined earlier, the player only observes the rewards of the
chosen actions. He must therefore make a trade-off between exploration and exploitation. The first
bandit algorithm that we consider is Explore Then Commit (ETC). It consists in first performing an
exploration phase of𝑚𝐾 length in which each arm is pulled𝑚 ≥ 1 times. Then it exploits by pulling
the arm with the best empirical reward for the remaining rounds. It is summarized in Algorithm 5.1.

Parameter: 𝑚 ≥ 1.
1. Exploration

– For rounds 𝑡 = 1, . . . ,𝑚𝐾 explore by drawing each arm𝑚 times.
– Compute for each arm 𝑘 its empirical mean of rewards obtained by pulling arm 𝑘 𝑚

times

𝜇̂𝑘 (𝑚) =
1
𝑚

𝐾𝑚∑︁
𝑠=1

𝑋𝑘,𝑡1{𝑘𝑡 = 𝑘} .

2. Exploitation: keep playing the best arm arg max𝑘 𝜇̂𝑘 (𝑚) for the remaining rounds 𝑡 =
𝑚𝐾 + 1, . . . ,𝑇 .

Algorithm 5.1: Explore-Then-Commit (ETC)

Theorem 5.2 Thm 6.1, ?
If 1 ≤ 𝑚 ≤ 𝑇 /𝐾 then

𝑅𝑇 ≤ 𝑚
𝐾∑︁
𝑘=1

Δ𝑘 + (𝑇 −𝑚𝐾)
𝐾∑︁
𝑘=1

Δ𝑘 exp
(
−𝑚Δ2

𝑘

)
.

Proof. Assume without loss of generality that the first arm is optimal, i.e., 𝜇1 = 𝜇
∗ and Δ1 = 0. From (5.1),

we have

𝑅𝑇 =

𝐾∑︁
𝑘=1

Δ𝑘E
[
𝑁𝑘 (𝑡)

]
.
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Let 𝑘 ≥ 2 be a suboptimal arm. Then, the arm 𝑘 is selected𝑚 times during the exploration phase, and
𝑇 −𝑚𝐾 times during the exploitation if 𝑘 is selected, which implies 𝜇̂𝑘 (𝑚) ≥ 𝜇̂1(𝑚). Therefore,

E
[
𝑁𝑘 (𝑡)

]
≤ 𝑚 + (𝑇 −𝑚𝐾)P

(
𝜇̂𝑘 (𝑚) ≥ 𝜇̂1(𝑚)

)
Now, we can use Hoeffding’s inequality to control the probability in the right-hand side. Indeed 𝜇̂𝑘 (𝑚)
and 𝜇1 are respectively the empirical averages of𝑚 i.i.d. random variables in [0, 1] of mean 𝜇𝑘 and
𝜇1 = 𝜇

∗. Therefore,

P
(
𝜇̂𝑘 (𝑚) − 𝜇̂1(𝑚) ≥ 0

)
= P

(
𝜇̂𝑘 (𝑚) − 𝜇̂1(𝑚) − 𝜇𝑘 + 𝜇1 ≥ −𝜇𝑘 + 𝜇1

)
= P

(
𝜇̂𝑘 (𝑚) − 𝜇̂1(𝑚) − 𝜇𝑘 + 𝜇1 ≥ Δ𝑘

)
= P

(
𝑚𝜇̂𝑘 (𝑚) −𝑚𝜇̂1(𝑚) −𝑚𝜇𝑘 +𝑚𝜇1 ≥ 𝑚Δ𝑘

)
≤ exp

(
−𝑚Δ2

𝑘

)
.

This implies

𝑅𝑇 ≤ 𝑚
𝐾∑︁
𝑘=1

Δ𝑘 + (𝑇 −𝑚𝐾)
𝐾∑︁
𝑘=1

Δ𝑘 exp
(
−𝑚Δ2

𝑘

)
.

□

The bound in Theorem 5.2 illustrates the trade-off between exploration and exploitation. If𝑚 is large,
the exploration is too long and the first term𝑚

∑𝐾
𝑘=1 Δ𝑘 yields a large regret. On the other hand, for

small𝑚, there is a large probability to choose a suboptimal arm during the exploitation and the other
term might lead to a large regret. The question is which value of𝑚 should we choose?

To have an idea, we will consider the case 𝐾 = 2, in which case the bound is

𝑅𝑇 ≤ 𝑚Δ2 +𝑇Δ2 exp
(
−𝑚Δ2

2
)
.

Corollary 5.3
If 𝐾 = 2 and𝑚 = max

{
1, ⌈log(𝑇Δ2

2)/Δ2
2⌉

}
, then

𝑅𝑇 ≤ Δ2 +
1 + log

(
𝑇Δ2

2
)

Δ2
.

The above bound is of order 𝑂 ((log𝑇 )/Δ2). Such bounds are called distribution-dependent because
they heavily depend on the distributions 𝜈𝑘 via Δ𝑘 . If Δ2 → 0, it explodes. However, we also have
from (5.1) that 𝑅𝑇 ≤ Δ2𝑇 . Therefore, in the worst case for any value of Δ2, Corollary 5.3 yields to the
worst-case bound

𝑅𝑇 ≤ min
{
𝑇Δ2,Δ2 +

1 + log
(
𝑇Δ2

2
)

Δ2

}
≲

√︁
𝑇 log𝑇 . (5.2)

The above bound is close to be optimal. Yet, the issue is that the parameter𝑚 depends on Δ2 and𝑇 . If the
dependence on 𝑇 can be dealt with a doubling-trick it is harder to optimize it in Δ2. Furthermore, when
there are more than two arms, one might want to explore differently the arms. The upper-confidence-
bound algorithm that we will see next does not have these issues.

Exercise 5.1. Show that it is possible to achieve the worst-case bound on the pseudo-regret of order𝑂 (𝑇 2/3)
by optimizing𝑚 independently of Δ (only with 𝑇 ).
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Exercise 5.2. Generalize the results of Theorem 5.2 and 5.3 when the rewards are not-bounded but
𝜎2-sub-Gaussian, i.e., for all 𝜆 > 0

E
[
exp

(
𝜆(𝑋𝑘,𝑡 − E[𝑋𝑘,𝑡 ])

) ]
≤ exp

(𝜆2𝜎2

2

)
.

5.3 Upper-Confidence-Bound (UCB)

The UCB (Upper-Confidence-Bound) algorithm is a very popular bandit algorithm that has several
advantages over ETC. It does not rely on an initial exploration phase but explores on the fly as rewards
are observed. It explores and exploits sequentially throughout the experience. Unlike ETC, it does not
require knowledge of gaps and behaves well when there are more than two arms.

To perform exploration and face uncertainty, the UCB algorithm is based on the optimism principle.

For each arm 𝑘 , it builds a confidence interval on its
expected reward based on past observation

𝐼𝑘 (𝑡) =
[
𝐿𝐶𝐵𝑘 (𝑘),𝑈𝐶𝐵𝑘 (𝑡)

]
where 𝐿𝐶𝐵 is the Lower-Confidence-Bound and UCB is
the Upper-Confidence-Bound. Then it is optimistic acting
as if the best possible rewards are the real rewards and
chooses the next arm accordingly

𝑘𝑡 ∈ arg max
𝑘∈{1,...,𝐾 }

𝑈𝐶𝐵𝑘 (𝑡) .

In other words, it pulls the arm with the higher upper-
confidence-bound. An example of how UCB works with
three arms of means 𝜇1 = 0.1, 𝜇2 = 0.6 and 𝜇3 = 0.3
is plotted in the Figure on the right. The best arm is
pulled more often (see x-axis for number of times arms
are selected) and his confidence interval is smaller.

The only question is how to design the upper-confidence-bounds. This is based on Hoeffding’s inequality.
Since the rewards are i.i.d. the distribution of 𝜇̂𝑘 (𝑠) is equal to the distribution of

1
𝑠

𝑠∑︁
𝑠′=1

𝑋𝑘,𝑠′ ,

with mean 𝜇𝑘 . Therefore, from Hoeffding’s inequality, we have for all arms 𝑘 ∈ {1, . . . , 𝐾} , for all 𝑠 ≥ 1
and all 𝛿 ∈ (0, 1)

P

𝜇𝑘 ≥ 𝜇̂𝑘 (𝑠) +
√︄

log 1
𝛿

2𝑠

 ≤ 𝛿 . (5.3)

where 𝜇̂𝑘 (𝑡) is the empirical reward of arm 𝑘 after pulling it 𝑡 times. Therefore, it is reasonable to choose
the upper-confidence bound

𝑈𝐶𝐵𝑡 (𝑘) =
{
∞ if 𝑁𝑘 (𝑡 − 1) = 0
𝜇̂𝑘 (𝑁𝑘 (𝑡 − 1)) +

√︃
2 log 𝑡
𝑁𝑘 (𝑡−1) otherwise
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The UCB algorithm is described in Algorithm 5.2.

Initialization For rounds 𝑡 = 1, . . . , 𝐾 pull arm 𝑘𝑡 = 𝑡

For 𝑡 = 𝐾 + 1, . . . ,𝑇 , choose

𝑘𝑡 ∈ arg max
𝑘∈{1,...,𝐾 }

{
𝜇̂𝑘 (𝑁𝑘 (𝑡 − 1)) +

√︄
2 log 𝑡

𝑁𝑘 (𝑡 − 1)

}
,

and get reward 𝑋𝑘𝑡 ,𝑡 .

Algorithm 5.2: Upper-Confidence-Bound (UCB)

Theorem 5.4
If the distributions 𝜈𝑘 have supports all included in [0, 1] then for all 𝑘 such that Δ𝑘 > 0

E
[
𝑁𝑘 (𝑇 )

]
≤ 8 log𝑇

Δ2
𝑘

+ 2 .

In particular, this implies that the pseudo-regret of UCB is upper-bounded as

𝑅𝑇 ≤ 2𝐾 +
∑︁

𝑘 :Δ𝑘>0

8 log𝑇
Δ𝑘

.

Remark. Let us make some remarks about the about upper-bound on the pseudo-regret.

– UCB has a regret bound of order

𝑅𝑇 ≲
𝐾 log𝑇

Δ
,

where Δ = min𝑖:Δ𝑖>0 Δ𝑖 . Once again, using that the regret incurred from pulling arm 𝑘 cannot be
larger than𝑇Δ𝑘 , this distribution-dependent upper-bound can be transformed into a distribution-free
bound of order 𝑅𝑇 ≲

√︁
𝑇𝐾 log𝑇 . We leave this proof as an exercise.

– This bound is close to optimal since the lower bound is of order 𝑂 (
√
𝐾𝑇 ). There exists modification

of UCB to get rid of the extra logarithmic term. For instance, the MOSS algorithm (Minimax Optimal
Strategy in the Stochastic Case) achieves

𝑅𝑇 ≲ min
{√
𝑇𝐾,

𝐾

Δ
log 𝑇Δ

2

𝐾

}
,

however it depends on the smallest gap Δ only and not on all gaps Δ𝑖 .
– The assumption that the rewards are independent between arms can be relaxed.
– The assumption that the rewards are in [0, 1] can be relaxed to a sub-Gaussian assumption.
– While a bound on the pseudo-regret is interesting, one would actually want a bound with high

probability on

𝑅𝑇
def
= 𝑇 𝜇∗ −

𝑇∑︁
𝑡=1

𝜇𝑘𝑡 ,𝑡 .

Using Hoeffding’s inequality to control 𝑅𝑇 with 𝑅𝑇 = E[𝑅𝑇 ] would yield an additional term of
order

√
𝑇 due to fluctuations which would dominate 𝑂 (𝐾 log𝑇 /Δ). Obtaining a bound of order
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𝑂 (𝐾 log𝑇 /Δ) on 𝑅𝑇 is a challenging problem and not achieved by UCB. Some strategies using the
knowledge of 𝑇 can satisfy it.

Proof. Without loss of generality let us assume that the first arm is optimal, i.e., 𝜇1 = 𝜇
∗ and Δ1 = 0. We

show below that if 𝑘𝑡 = 𝑘 , then at least one of the following three inequalities must be satisfied

𝜇∗ > 𝜇̂1
(
𝑁1(𝑡 − 1)

)
+

√︄
2 log 𝑡

𝑁1(𝑡 − 1) ← 𝜇∗ larger than UCB (i)

𝜇𝑘 < 𝜇̂𝑘
(
𝑁𝑘 (𝑡 − 1)

)
−

√︄
2 log 𝑡

𝑁𝑘 (𝑡 − 1) ← 𝜇𝑘 smaller than LCB (ii)

𝑁𝑘 (𝑡 − 1) ≤ 8 log 𝑡
Δ2
𝑘

← 𝑘 not played enough yet (iii)

Indeed, otherwise assume that the three inequalities are all false than

𝜇̂1(𝑁1(𝑡 − 1)) +

√︄
2 log 𝑡

𝑁1(𝑡 − 1) ≥ 𝜇
∗ ← not (i)

≥ 𝜇𝑘 + Δ𝑘 ← Def of Δ𝑘

> 𝜇𝑘 + 2

√︄
2 log 𝑡

𝑁𝑘 (𝑡 − 1) ← not (iii)

≥ 𝜇̂𝑘 (𝑁𝑘 (𝑡 − 1)) +

√︄
2 log 𝑡

𝑁𝑘 (𝑡 − 1) ← not (ii) .

This contradicts the fact that 𝑘𝑡 = 𝑘 (see Algorithm 5.2). Therefore, denoting 𝑢 = ⌊ 8 log𝑇
Δ2
𝑘

⌋, we have

E
[
𝑁𝑘 (𝑇 )

]
=

𝑇∑︁
𝑡=1

E
[
1𝑘𝑡=𝑘

]
= 𝑢 +

𝑇∑︁
𝑡=𝑢+1

P
{
𝑘𝑡 = 𝑘 and (iii) is false

}
= 𝑢 +

𝑇∑︁
𝑡=𝑢+1

(
P
{
(i) or (ii)

})
≤ 𝑢 +

𝑇∑︁
𝑡=𝑢+1

(
P
{
(i)

}
+ P

{
(ii)

})
. (5.4)

Therefore, it suffices to control the probabilities of (i) and (ii), which we do now. At round 𝑡 ≥ 1,

P
{
(i)

}
≤ P

{
∃𝑠 ∈ {1, . . . , 𝑡 − 1}, such that 𝜇∗ > 𝜇̂1(𝑠) +

√︂
2 log 𝑡
𝑠

}
≤

𝑡∑︁
𝑠=1

P

{
𝜇∗ > 𝜇̂1(𝑠) +

√︂
log(1/𝑡−4)

2𝑠

}
(5.3)
≤

𝑡∑︁
𝑠=1

𝑡−4 = 𝑡−3 .
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By symmetry, the same applies for P
{
(ii)

}
≤ 𝑡−3. Combining into (5.4), it concludes the proof of the

first inequality

E
[
𝑁𝑘 (𝑇 )

]
≤ 8 log𝑇

Δ2
𝑘

+ 2
𝑇∑︁

𝑡=𝑢+1
𝑡−3 ≤ 8 log𝑇

Δ2
𝑘

+ 2 .

The upper-bound on the pseudo-regret follows from (5.1). □

5.4 Other algorithms

Other algorithms exist in the literature. The best known are 𝜀-greedy and Thompson sampling.

5.4.1 𝜀-greedy

The idea of 𝜀-greedy is very simple: first choose a parameter 𝜀 ∈ (0, 1), then at each round, select
the arm with the highest empirical mean with probability 𝜀 (i.e., be greedy), and explore by playing a
random arm with probability 𝜀. It works quite well in practice and is used in many application because
of its simple implementation (in particular in reinforcement learning). Choosing 𝜀 ≈ 𝐾/(Δ2𝑇 ) yields to
an upper-bound of order 𝐾 log𝑇 /Δ2. However it requires the knowledge of Δ.

5.4.2 Thompson Sampling

Thomson sampling was the first algorithm proposed for bandits by Thomson in 1933. It assumes a
uniform prior over the expected rewards 𝜇𝑖 ∈ (0, 1), then at each round 𝑡 ≥ 1, for each arm 𝜋𝑘,𝑡 , it

– computes 𝜈̂𝑘,𝑡 the posterior distribution of the rewards of arm 𝑘 given the rewards observed so
far;

– samples 𝜃𝑘,𝑡 ∼ 𝜈̂𝑘,𝑡 independently;
– selects 𝑘𝑡 ∈ arg max𝑘∈{1,...,𝐾 } 𝜃𝑘,𝑡 .

Thomson sampling has a similar upper-bound of order 𝑂 (𝐾 log𝑇 /Δ) than the one achieved by UCB.
An advantage over UCB is the possibility of incorporating easily prior knowledge on the arms.

5.5 Lower bounds for multi-armed bandit

In this section, we essentially state that the regret bound of UCB

𝑅𝑇 ≲ min

√︁
𝐾𝑇 log𝑇,

∑︁
𝑘 :Δ𝑘>0

log𝑇
Δ𝑘


is close to optimal regret for multi-armed bandit.

5.5.1 Distribution-free lower bound

The next theorem shows that the previous results are not improvable (up to log factors).
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Theorem 5.5 Lower bound
For any forecaster, there exists distributions 𝜈1, . . . , 𝜈𝐾 such that

𝑅𝑇 ≳
√
𝐾𝑇 .

The complete proof can be found in Bubeck et al. [2012]. We only present here the high-level idea of the
proof. We design the adversary as follows: it generates i.i.d. Bernoulli rewards such that E[𝑋𝑘,𝑡 ] = 1

2
for all 𝑘 ∈ {1, . . . , 𝐾} except for one arm 𝑘∗ where E[𝑋𝑘∗,𝑡 ] = 1

2 + 𝜀.

– Fact 1: to distinguish between a Bernoulli of parameter 1/2 and a Bernoulli of parameter 1/2 + 𝜀,
one needs 1/𝜀2 samples. This result can be proved formally by using Pinsker’s inequality. The
intuition goes as follows. From the Central Limit Theorem (or the distribution of a Binomial
random variable), after 𝑇𝑘 observations of an arm 𝑘 , on can estimate its mean with an error of
order 1/

√
𝑇𝑘 . In other words, to estimate it with an error smaller than 𝜀, one needs 𝑇𝑘 ≈ 𝜀−2

observations.
– Fact 2: at least one arm is sampled less than 𝑇 /𝐾 times.

Assume that this arm is 𝑘∗, than the learner cannot distinguish it with other arms as soon as 𝑇𝑘∗ ≤
𝑇 /𝐾 ≤ 𝜀−2, which corresponds to 𝜀 ≤

√︁
𝐾/𝑇 . Choosing 𝜀 =

√︁
𝐾/𝑇 , the pseudo-regret is than at least

(1 − 1/𝐾)𝑇𝜀 ≈ 𝑇𝜀 ≈
√
𝐾𝑇 .

5.5.2 Distribution-dependent lower bound

Here, we show that the distribution dependent upper bound is not also optimal in the case of Bernoulli
rewards.

A caveat with distribution dependent lower bounds is that for any distribution, there exists an algorithm
with no-regret. For instance, consider a distribution 𝜈1, . . . , 𝜈𝐾 such that 𝜈1 is optimal (i.e., 𝜇1 = max𝑘 𝜇𝑘 ),
the the algorithm that pull always the first arm will have zero regret. Yet such an algorithm will incure
linear regret for some other distributions.

Hence, the following theorem states that any algorithm that incure sublinear regret for all distributions,
achieves at best a pseudo regret of the same order of the one satisfied by UCB. The proof can be found
in Bubeck et al. [2012].

Theorem 5.6 Thm 2.2. Bubeck et al. [2012]
Consider a strategy such that E

[
𝑁𝑘 (𝑇 )

]
= 𝑂 (𝑇𝑎) for any Bernoulli distributions, all suboptimal arms 𝑘

and some 𝑎 > 0. Then, for any Bernoulli distributions with means 𝜇𝑘 , we have

lim inf
𝑇→∞

𝑅𝑇

log𝑇 ≥
∑︁

𝑘 :Δ𝑘>0

𝜇∗(1 − 𝜇∗)
Δ𝑘

.

Note that the only difference with UCB is the factor 𝜇∗(1− 𝜇∗) which corresponds to the variance of the
best arm. In the case of Bernoulli noise, the KL-UCB algorithm can take advantage of the knowledge
that the rewards are Bernoulli to close this gap.
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6 Stochastic Contextual bandits

6 Stochastic Contextual bandits

During last chapter, we considered the finite-armed bandit setting and saw several algorithms (ETC,
UCB, 𝜀-greedy, Thomson sampling) that achieve sublinear pseudo regret. UCB achieves for instance

𝑅𝑇 ≲ min


𝐾∑︁
𝑘 :Δ𝑘>0

log𝑇
Δ𝑘

,
√︁
𝑇𝐾 log𝑇

 ,

where Δ𝑘
def
= 𝜇∗ − 𝜇𝑘 is the suboptimality gap of arm 𝑘 . The first bound is distribution dependent (it

depends on the gaps Δ𝑘 ) and is of order 𝑂 (log𝑇 ) while the second bound is distribution free but is of
order𝑂 (

√
𝑇 ). In this chapter, we consider the more practical setting of contextual bandits, in which the

learner observes a context 𝑐𝑡 ∈ 𝐶 before choosing the action 𝑘𝑡 .

In most applications, before choosing an action 𝑘𝑡 the player observes some context 𝑐𝑡 ∈ C.

For instance, consider a bandit problem in which the player needs to display ads on his website. At
each new visitor, the player chooses an add to display and observes if the visitor click on it. The reward
is one if there is a click and 0 otherwise. In this case, the player can see the cookie of the visitor before
choosing the ad. A first step towards contextual bandits, is to consider continuous sets of actions X,
which may correspond to mapping between context and arms.

6.1 Continuous stochastic bandits

Let first generalize the finite-armed bandit setting to continuous set of arms in Setting 6.1.

Unknown parameters: 𝜈 (𝜃 ), for each 𝜃 ∈ [0, 1]𝑑 , a probability distribution on [0, 1] with
expectation 𝜇 (𝜃 ) ∈ [0, 1].
At each time step 𝑡 = 1, . . . ,𝑇

– the player chooses an action 𝜃𝑡 ∈ Θ ⊆ [0, 1]𝑑 ;
– given 𝜃𝑡 , the environment draws the reward 𝑌𝑡 ∼ 𝜈 (𝜃𝑡 ) independently from the past;
– the player only observes the feedback 𝑌𝑡 .

The player wants to minimize its pseudo-regret defined as

𝑅𝑇
def
= 𝑇 𝜇∗ − E

[ 𝑇∑︁
𝑡=1

𝜇 (𝜃𝑡 )
]
,

where 𝜇∗ = sup𝜃 ∈Θ 𝜇 (𝜃 ).

Setting 6.1: Setting of stochastic bandit with continuous set of actions

53



Similarly to what we did in the full-information setting with
EWA, if the expectation function 𝜇 is 𝛽-Hölder: i.e., there exists
𝑐 > 0

∀𝜃, 𝜃 ′ ∈ X
��𝜇 (𝜃 ) − 𝜇 (𝜃 ′)�� ≤ 𝑐

𝜃 − 𝜃 ′

𝛽 ,

then we may discretize the action spaceΘ and run any discrete
bandit algorithm (UCB, 𝜀-greedy,. . . ).

 

 

Theorem 6.1
Let 𝛽 > 0 and 𝜀 > 0. Assume that 𝜇 is 𝛽-Hölder. If UCB is run on an 𝜀-covering of minimal cardinal of
Θ ⊂ [0, 1]𝑑 , then it satisfies

𝑅𝑇 ≲ 𝑇𝜀𝛽 +
√︂
𝑇 log(𝑇 )

𝜀𝑑
.

In particular for 𝜀 ≈
(

log𝑇
𝑇

) 1
2𝛽+𝑑

, we have 𝑅𝑇 ≲ 𝑇
(

log𝑇
𝑇

) 𝛽

2𝛽+𝑑
.

Proof. An optimal 𝜀-covering of [0, 1]𝑑 has cardinal of order 𝐾 ≈ 𝜀−𝑑 . Let 𝑥∗ ∈ arg max𝜃 ∈Θ 𝜇 (𝜃 ) (we
assume that it exists) and 𝜃 ∗ its 𝜀-approximation, then the distribution-free upper-bound of UCB yields

𝑅𝑇 ≲ 𝑇
(
𝜇 (𝜃 ∗) − 𝜇 (𝜃 ∗)

)
+

√︁
𝐾𝑇 log𝑇 ≈ 𝑐𝑇𝜀𝛽 +

√︃
𝜀−𝑑𝑇 log𝑇 .

The second part of the theorem is obtained by obtimizing 𝜀. □

To build the discretization, both 𝛽 and 𝑇 need to be known in advance. The horizon 𝑇 can be calibrated
online through a “doubling trick” (left as exercise). The parameter 𝛽 may be tuned through bandit
with experts (or bandits where arms are bandit algorithms) that we may see in next lecture (see Exp4
algorithm).

Note that the per-round complexity of such an algorithm is of order 𝜀−𝑑 ≈ 𝑇
𝑑

2𝛽+𝑑 . Quite surprinsingly it
does not explodes with the dimension 𝑑 and is always smaller than 𝑇 . This is due to the fact that the
higher the dimension 𝑑 is, the worse will be the regret bound, and the cruder needs the discretization to
be.

6.1.1 Contextual bandits through discretization

No we consider the following contextual bandit setting in which the player has a finite decision set
Θ = {1, . . . , 𝐾} but observes a context 𝑥𝑡 ∈ X before choosing his action.

Finite set of contexts If the set of context is finite X def
= {1, . . . , |X|} we can denote

𝑅𝑇 (𝑐)
def
= E

[
𝑇∑︁
𝑡=1

(
𝜇∗(𝑥) − 𝜇 (𝑘𝑡 , 𝑥)

)
1𝑥𝑡=𝑥

]
the pseudo-regret due to context 𝑥 ∈ X. Then applying a separate instance of UCB (or any bandit
algorithm) for each context 𝑥 ∈ X, we get by using the distribution-free upper-bound of UCB

𝑅𝑇 (𝑥) ≲
√︁
𝑇𝑥𝐾 log𝑇𝑥 , where 𝑇𝑥

def
=

𝑇∑︁
𝑡=1

1𝑥𝑡=𝑥 .
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Unknown parameters: 𝜈 (𝑘, 𝑥), for each arm 𝑘 ∈ {1, . . . , 𝐾} and context 𝑥 ∈ X, a probability
distribution on [0, 1] with expectation 𝜇 (𝑘, 𝑥) ∈ [0, 1].
At each time step 𝑡 = 1, . . . ,𝑇

– the environment chooses 𝑥𝑡 ∈ X and reveals it to the player;
– the player chooses an action 𝑘𝑡 ∈ {1, . . . , 𝐾};
– given 𝑘𝑡 , the environment draws the reward 𝑌𝑡 ∼ 𝜈 (𝑘𝑡 , 𝑥𝑡 ) independently from the

past;
– the player only observes the feedback 𝑌𝑡 .

The player wants to minimize its pseudo-regret defined as

𝑅𝑇
def
= E

[
𝑇∑︁
𝑡=1

𝜇∗(𝑥𝑡 ) −
𝑇∑︁
𝑡=1

𝑌𝑡

]
,

where 𝜇 (𝑘, 𝑥) = E𝑌∼𝜈 (𝑘,𝑥 ) [𝑌 ] and 𝜇∗(𝑥) = max𝑘=1,...,𝐾 𝜇 (𝑘, 𝑥).

Setting 6.2: Setting of contextual stochastic bandit

Note that because 𝑇𝑥 are not known in advance it is important that the bound of UCB is anytime (i.e.,
that UCB does not need to know the horizon). The total pseudo-regret of UCB is then obtained by
summing over all contexts

𝑅𝑇 =
∑︁
𝑥∈X

𝑅𝑇 (𝑥) ≲
∑︁
𝑥∈X

√︁
𝑇𝑥𝐾 log𝑇 ≤

√︁
|X|𝑇𝐾 log𝑇 ,

where the last inequality is by Jensen’s inequality using the concavity of the square root and
∑
𝑥∈X 𝑇𝑥 =

𝑇 .

Continuous set of contexts If the set of context is continuous X ⊂ [0, 1]𝑑 , one needs again to make
assumption on the distributions 𝜈 (𝑘, 𝑥) which needs to vary smoothly in 𝑥 . Doing so, one may discretize
the set of context with an 𝜀-covering of X of size 𝑁 ≈ 𝜀−𝑑 and run an independent instance of UCB in
each of the 𝑁 bins.

Theorem 6.2
Let 𝛽 > 0 and 𝜀 > 0. Assume that 𝑥 ↦→ 𝜇 (𝑘, 𝑥) is 𝛽-Hölder for all 𝑘 ∈ X. If UCB is independently run in
each bin of an optimal 𝜀-covering of X, then

𝑅𝑇 ≲ 𝑇𝜀𝛽 +
√︂
𝐾𝑇 log𝑇

𝜀𝑑
.

In particular for 𝜀 well-optimized, we have 𝑅𝑇 ≲ 𝑇
(
𝐾 log𝑇
𝑇

) 𝛽

2𝛽+𝑑
.

Remark that in all these regret bounds, the suboptimal log𝑇 term can be removed by using MOSS (a
minimax optimal variant of UCB).

Better rates using distribution-dependent bound? In the above results, we used the distribution-
free regret bound of UCB. Because, if the function 𝜇 (·, 𝑥) varies smoothly with 𝑥 , there should be some
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context with zero suboptimality gaps. Yet, it is possible to get better rates by assuming the following
𝛼-margin assumption. It controls the suboptimality gap with high probability: the contexts 𝑥𝑡 are i.i.d.
and sastify for all 𝛿 ∈ (0, 1)

P
{

min
𝑘 :Δ(𝑘,𝑥𝑡 )>0

Δ(𝑘, 𝑥𝑡 ) < 𝛿
}
≤ □𝛿𝛼 (6.1)

where Δ(𝑘, 𝑥𝑡 )
def
= 𝜇∗(𝑥) − 𝜇 (𝑘, 𝑥) and □ is some constant. Note that the larger the value of 𝛼 is the

easier is the problem.

Theorem 6.3 Theorem 4.1, Perchet and Rigollet [2013]
Let 𝛼 ∈ (0, 1), 𝛽 > 0 and 𝜀 > 0. Assume that 𝑐 ↦→ 𝜇 (𝑘, 𝑥) is 𝛽-Hölder for all 𝑘 ∈ X and that the
𝛼-margin assumption (6.1) holds. Running a bandit algorithm (similar to UCB) independently in each
bin of an optimal 𝜀-covering of X, we get

𝑅𝑇 ≲ 𝑇
(
𝐾 log𝐾
𝑇

) 𝛽 (𝛼+1)
2𝛽+𝑑

,

for optimized 𝜀.

The proof (for another algorithm then UCB) may be found in Perchet and Rigollet [2013]. We see that
the factor 𝛼 improves the rate of convergence with respect to the previous rate.

6.1.2 Stochastic Linear bandits

Contextual bandits that we just saw generalizes multi-armed bandits by allowing contexts. However,
the dimension of the context space significantly worsen the regret rate from

√
𝑇 to 𝑇 𝑑+1

𝑑+2 for Lipschitz
rewards for instance (𝛽-Hölder with 𝛽 = 1). In this part, we will see Stochastic linear bandits, in which
we assume the rewards to have a linear structure. This includes rich classes of models and allows better
regret of order 𝑂 (

√
𝑇 ).

Unknown parameter: 𝜇∗ ∈ R𝑑 .
At each time step 𝑡 = 1, . . . ,𝑇

– the environment chooses Θ𝑡 ⊆ R𝑑 the decision set;
– the player chooses an action 𝜃𝑡 ∈ Θ𝑡 ;
– given 𝜃𝑡 , the environment draws the reward

𝑌𝑡 = 𝜃𝑡 · 𝜇∗ + 𝜀𝑡

where 𝜀𝑡 is i.i.d. 1-subgaussian noise.
– the player only observes the feedback 𝑌𝑡 .

The player wants to minimize its pseudo-regret defined as

𝑅𝑇
def
= E

[
𝑇∑︁
𝑡=1

max
𝜃 ∈Θ𝑡

𝜃 · 𝜇∗ −
𝑇∑︁
𝑡=1

𝑌𝑡

]
.

Setting 6.3: Setting of stochastic linear bandit

The setting of stochastic linear bandits is described in Setting 6.3. For simplicity, the noise 𝜀𝑡 is assumed
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to be i.i.d. and 1-subgaussian noise: i.e., E[𝜀𝑡 ] = 0 and

∀𝜆 > 0, E
[

exp(𝜆𝜀𝑡 )
]
≤ exp(𝜆2/2)

almost surely. Note that we could consider 𝜎2-subgaussian noise, or make it depend on the past
F𝑡 = 𝜎 (𝑥1, 𝜀1, . . . , 𝑥𝑡 , 𝜀𝑡 ) with E[𝜀𝑡 |F𝑡 ] = 0.

Particular cases: why is this setting interesting? Different choices of decision sets X𝑡 lead to
different settings of stochastic bandits:

– Finite-armed bandit: if Θ𝑡 = (𝑒1, . . . , 𝑒𝑑 ) where 𝑒𝑖 are the unit vectors in R𝑑 and 𝜇∗ = (𝜇1, . . . , 𝜇𝑑 ),
we recover the setting of finite-armed bandit.

– Contextual linear bandit: we can recover a particular case of Setting 6.2, if 𝑥𝑡 ∈ X is a context
observed by the player and the reward function 𝜇 is of the form

𝜇 (𝜃, 𝑥) = 𝜓 (𝜃, 𝑥) · 𝜇∗, ∀(𝜃, 𝑥) ∈ [𝐾] × X ,

for some unknown parameter 𝜇∗ ∈ R𝑑 and feature map 𝜓 : [𝐾] × X → R𝑑 . For example, assume
that you are a website which wants to display ads to visitors. The context 𝑥𝑡 can be the cookie
of the visitor containing information about what he likes, the actions are the possible ads to
be displayed and the reward tells if there is a click. If the possible interests of the visitor are
grouped in finite categories (such as traveling), so are the ads (in groups of products, such as flight
tickets), the feature maps could contained all the combinations between interests and groups
of products. The unknown vector 𝜃 ∗ would be tell which interests and groups of products are
positively correlated. Of course the feature map could be created using any methods (such as
deep-learning or splines).

– Combinatorial bandit: if Θ𝑡 ⊆ {0, 1}𝑑 yields to combinatorial bandit problems. For instance, the
decision set corresponds to possible paths in a graph, the vector 𝜇∗ assigns to each edge a reward
corresponding to its cost and the goal is to find the smallest path with smallest cost.

Algorithm: LinUCB As we saw earlier with UCB, the “optimism principle” is a good option for
bandit problems to explore. The LinUCB algorithm is based on the same principle:

1. Build confidence set that contain 𝜇∗: 𝜇∗ ∈ 𝐶𝑡 with high probability
2. Build confidence upper-bound on the rewards: for all 𝜃 ∈ Θ𝑡

UCB𝑡 (𝜃 ) = max
𝜇∈𝐶𝑡

𝜃 · 𝜇 (6.2)

3. Be optimistic: act as if the best possible rewards were the true rewards

𝜃𝑡 ∈ arg max
𝜃 ∈Θ𝑡

UCBt(𝜃 ) . (6.3)

Therefore the only remaining question is how to build the confidence set𝐶𝑡 ⊆ R𝑑? They should contain
𝜇∗ with high probability but be as small as possible. Given the observed rewards the key is thus to
estimate the parameter 𝜇∗. Denoting by 𝐼𝑑 the 𝑑 × 𝑑 identity matrix and picking 𝜆 > 0, we can estimate
𝜇∗ with regularized least square

𝜇̂𝑡
def
= arg min

𝜇∈R𝑑

{
𝑡∑︁
𝑠=1
(𝑌𝑠 − 𝜃𝑠 · 𝜇

)2 + 𝜆∥𝜇∥2
}
= 𝑉 −1

𝑡

𝑡∑︁
𝑠=1

𝜃𝑠𝑌𝑠 ,
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where 𝑉𝑡
def
= 𝜆𝐼𝑑 +

∑𝑡
𝑠=1 𝜃𝑠𝜃

⊤
𝑠 . We have the following result whose proof can be found in Lattimore and

Szepesvári [2020].

Lemma 6.4 Theorem 20.2, Lattimore and Szepesvári [2020]
Let 𝛿 ∈ (0, 1). Then, with probability at least 1 − 𝛿 , if max𝜃 ∈Θ𝑡

∥𝜃 ∥2 ≤ 1, for all 𝑡 ≥ 1



𝜇̂𝑡 − 𝜇∗

𝑉𝑡 ≤ √𝜆∥𝜇∗∥ +
√︄

2 log(1/𝛿) + 𝑑 log
(
1 + 𝑇

𝜆

)
def
= 𝛽 (𝛿) ,

where ∥𝜇∥2
𝑉𝑡

= 𝜇⊤𝑉𝑡𝜇.

The above lemma, states that with probability 1 − 𝛿 , for all 𝑡 ≥ 1,

𝜇∗ ∈ 𝐶𝑡 , where 𝐶𝑡
def
=

{
𝜃 ∈ R𝑑 :



𝜇 − 𝜇̂𝑡−1



𝑉𝑡−1
≤ 𝛽 (𝛿/𝑇 )

}
. (6.4)

Proof of Lemma 6.4. The proof relies on Laplace’s method on super-martingales which is a standard
argument to provide confidence bounds on a self-normalized sum of conditionally centered random
vectors. We have

𝜇̂𝑡 = 𝑉
−1
𝑡

𝑡∑︁
𝑠=1

𝜃𝑠𝑌𝑠 = 𝑉
−1
𝑡

𝑡∑︁
𝑠=1

𝜃𝑠 (𝜃⊤𝑠 𝜇∗ + 𝜀𝑠) = 𝑉 −1
𝑡 (𝑉𝑡 − 𝜆𝐼𝑑 )𝜇∗ +𝑀𝑡 ) = 𝜇∗ − 𝜆𝑉 −1

𝑡 𝜇∗ +𝑉 −1
𝑡 𝑀𝑡 ,

where we introduced𝑀𝑡 =
∑𝑡
𝑠=1 𝜃𝑠𝜀𝑠 , which is a martingale with respect to F𝑡 = 𝜎 (𝜀1, . . . , 𝜀𝑡 ). Therefore,

by triangle inequality

𝑉 1/2
𝑡 (𝜇̂𝑡 − 𝜇∗)



 = 

 − 𝜆𝑉 −1/2
𝑡 𝜇∗ +𝑉 −1/2

𝑡 𝑀𝑡



 ≤ 𝜆

𝑉 −1/2
𝑡 𝜇∗



 + 

𝑉 −1/2
𝑡 𝑀𝑡



 .
On the one hand, given that all eigenvalues of the symmetric matrix𝑉𝑡 are larger than 𝜆, all eigenvalues
of 𝑉 −1/2

𝑡 are smaller than 1/
√
𝜆 and thus

𝜆


𝑉 −1/2
𝑡 𝜇∗



 ≤ 𝜆 1
√
𝜆
∥𝜇∗∥ =

√
𝜆∥𝜇∗∥ .

We now prove, on the other hand, that with probability at least 1 − 𝛿

𝑉 −1/2
𝑡 𝑀𝑡



 ≤ √︂
2 log 1

𝛿
+ 𝑑 log 1

𝜆
+ log det(𝑉𝑡 ) .

Upper-bounding log det(𝑉𝑡 ) ≤ 𝑑 log(𝜆 + 𝑡) (since all the eigenvalues of 𝑉𝑡 are smaller than 𝜆 + 𝑡 ) will
then conclude the proof of the Theorem.

Step 1: Introducing super-martingales. For all 𝜈 ∈ R𝑑 , we consider

𝑆𝑡,𝜈 = exp
(
𝜈⊤𝑀𝑡 −

1
2𝜈
⊤𝑉𝑡𝜈

)
and now show that it is an F𝑡 -super-martingale. First, note that since the common distribution of the
𝜀1, . . . , 𝜀𝑡 is 1-sub-Gaussian, the for all F𝑡−1-measurable random variable 𝜈𝑡−1

E
[
𝑒𝜈𝑡−1𝜀𝑡

��F𝑡−1
]
≤ 𝑒

𝜈2
𝑡−1
2 .
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Now,
E
[
𝑆𝑡,𝜈

��F𝑡−1
]
= 𝑆𝑡−1,𝜈E

[
exp

(
𝜈⊤𝜃𝑡𝜀𝑡 −

1
2𝜈
⊤𝜃𝑡𝜃

⊤
𝑡 𝜈

)���F𝑡−1
]
≤ 𝑆𝑡−1,𝜈 .

Note that rewriting 𝑆𝑡,𝜈 in its vertex form is, with𝑚 = 𝑉 −1
𝑡 𝑀𝑡 :

𝑆𝑡,𝜈 = exp
(1
2 (𝜈 −𝑚)

⊤𝑉𝑡 (𝜈 −𝑚)
)
× exp

(1
2


𝑉 −1/2
𝑡 𝑀𝑡



2
)
.

Step 2: Laplace’s method–integrating 𝑆𝑡,𝜈 over 𝜈 ∈ R𝑑 . The basic observation behind this method is that
(given the vertex form) 𝑆𝑡,𝜈 is maximal at 𝜈 =𝑚 = 𝑉 −1

𝑡 𝑀𝑡 and then equals exp
( 1

2


𝑉 −1/2
𝑡 𝑀𝑡



2) , which
is (a transformation of) the quantity to control. Now, because the exp function quickly vanishes, the
integral over 𝜈 ∈ R𝑑 is close to its maximum. We therefore consider

𝑆𝑡 =

∫
R𝑑

𝑆𝑡,𝜈𝑑𝜈 .

We will make repeated uses of the fact that the Gaussian density function

𝜈 ↦→ 1√︁
det(2𝜋𝐶)

exp
(
(𝜈 −𝑚)⊤𝐶−1(𝜈 −𝑚)

)
,

where𝑚 ∈ R𝑑 and 𝐶 is a symmetric positive definite matrix, integrate to 1 over R𝑑 . This gives us the
first rewriting

𝑆𝑡 =

√︃
det(2𝜋𝑉 −1

𝑡 ) exp
(1
2


𝑉 −1/2
𝑡 𝑀𝑡



2
)
.

Second, by the Fubini-Tonelli theorem and the super-martingale property

E
[
𝑆𝑡,𝜈

]
≤ E

[
𝑆0,𝜈

]
= exp(−𝜆∥𝜈 ∥2/2

)
,

we also have
E
[
𝑆𝑡

]
≤

∫
R𝑑

exp(−𝜆∥𝜈 ∥2/2
)
𝑑𝜈 =

√︁
det(2𝜋𝜆−1𝐼𝑑 ) .

Combining the two statements, we proved

E
[

exp
(1
2


𝑉 −1/2
𝑡 𝑀𝑡



2
)]
≤

√︂
det(𝑉𝑡 )
𝜆𝑑

.

Step 3: Markov-Chernov bound. For 𝑢 > 0,

P
(

𝑉𝑡−1/2𝑀𝑡



 > 𝑢

)
= P

( 

𝑉𝑡−1/2𝑀𝑡



2

2 >
𝑢2

2

)
≤ exp

(
− 1

2𝑢
2)E[

exp
(1
2


𝑉 −1/2
𝑡 𝑀𝑡



2
)]
≤ exp

(
− 𝑢

2

2 +
1
2 log det(𝑉𝑡 )

𝜆𝑑

)
= 𝛿 ,

for the claimed choice

𝑢 =

√︂
2 log 1

𝛿
+ 𝑑 log 1

𝜆
+ log det(𝑉𝑡 ) .

□
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Theorem 6.5 Corollary 19.2, ?
Let 𝑇 ≥ 1 and 𝜇∗ ∈ R𝑑 . Assume that for all 𝜃 ∈ ∪𝑇𝑡=1Θ𝑡 , |𝜃 · 𝜇∗ | ≤ 1, ∥𝜇∗∥ ≤ 1 and ∥𝜃𝑡 ∥ ≤ 1, then
LinUCB with 𝐶𝑡 defined in (6.4) satisfies the pseudo-regret bound

𝑅𝑇 ≤ □𝜆𝑑
√
𝑇 log(𝑇 ) ,

where □𝜆 is a constant that may depend on 𝜆.

Proof. Let 𝛿 = 1/𝑇 . By Lemma 6.4, with probability 1 − 1/𝑇 ,

∀𝑡 ≥ 1, 𝜇∗ ∈ 𝐶𝑡 . (6.5)

Step 1: Small instantaneous regrets under the event (6.5). Assume that (6.5) holds. Let

𝜃 ∗𝑡
def
= max

𝜃 ∈Θ𝑡

𝜃 · 𝜇∗ and 𝑟𝑡
def
= (𝜃 ∗𝑡 − 𝜃𝑡 ) · 𝜇∗

be respectively the optimal decision and the instantaneous regret at round 𝑡 . We also define

𝜇̃𝑡 ∈ arg max
𝜇∈𝐶𝑡

{
𝜃𝑡 · 𝜇

}
.

Since 𝜇∗ ∈ 𝐶𝑡 , we have

𝜃 ∗𝑡 · 𝜇∗ ≤ max
𝜇∈𝐶𝑡

{
𝜃 ∗𝑡 · 𝜇

} (6.2)
= 𝑈𝐶𝐵𝑡 (𝜃 ∗𝑡 )

(6.3)
≤ 𝑈𝐶𝐵𝑡 (𝜃𝑡 ) = max

𝜇∈𝐶𝑡

{
𝜃𝑡 · 𝜇

}
= 𝜃𝑡 · 𝜇̃𝑡 ,

which entails because 𝜇∗ and 𝜇̃𝑡 belong to 𝐶𝑡 ,

𝑟𝑡
def
= (𝜃 ∗𝑡 − 𝜃𝑡 ) · 𝜇∗ ≤ 𝜃𝑡 · (𝜇̃𝑡 − 𝜇∗)

Cauchy-Schwarz
≤ ∥𝜃𝑡 ∥𝑉 −1

𝑡−1



𝜇̃𝑡 − 𝜇∗

𝑉𝑡−1
≤ 2∥𝜃𝑡 ∥𝑉 −1

𝑡−1
𝛽 (1/𝑇 2) .

Therefore, summing over 𝑡 = 1, . . . ,𝑇 and using 𝑟𝑡 ≤ 2, we have

𝑅𝑇
def
=

𝑇∑︁
𝑡=1

𝑟𝑡 ≤

√√√
𝑇

𝑇∑︁
𝑡=1

𝑟 2
𝑡 ← Jensen’s inequality

≤ 2

√√√
𝑇

𝑇∑︁
𝑡=1

min
{
∥𝜃𝑡 ∥2

𝑉 −1
𝑡−1
𝛽 (1/𝑇 2)2, 1

}
≤ 2𝛽 (1/𝑇 2)

√√√
𝑇

𝑇∑︁
𝑡=1

min
{
∥𝜃𝑡 ∥2

𝑉 −1
𝑡−1
, 1

}
← 𝛽𝑇 (1/𝑇 2) ≥ 1

≤ 2𝛽 (1/𝑇 2)

√√√
𝑇

𝑇∑︁
𝑡=1

log
(
1 + ∥𝜃𝑡 ∥2

𝑉 −1
𝑡−1

)
← min{𝑢, 1} ≤ 2 log(1 + 𝑢) .

But, we have

1 + ∥𝜃𝑡 ∥2𝑉 −1
𝑡−1

= det
(
1 + ∥𝜃𝑡 ∥2𝑉 −1

𝑡−1

)
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= det
(
𝑉 −1
𝑡−1

(
𝑉𝑡−1 +𝑉 1/2

𝑡−1 ∥𝜃𝑡 ∥
2
𝑉 −1
𝑡−1
𝑉

1/2
𝑡−1

) )
← using det(𝐼 +𝐴𝐵) = det(𝐼 + 𝐵𝐴)

= det
(
𝑉 −1
𝑡−1

(
𝑉𝑡−1 + 𝜃𝑡𝜃⊤𝑡

) )
← ∥𝜃𝑡 ∥𝑉 −1

𝑡−1
= 𝑉

−1/2
𝑡−1 𝜃𝑡𝜃

⊤
𝑡 𝑉
−1/2
𝑡−1

= det
(
𝑉 −1
𝑡−1𝑉𝑡

)
← 𝑉𝑡 = 𝑉𝑡−1 + 𝜃𝑡𝜃⊤𝑡

=
det(𝑉𝑡 )

det(𝑉𝑡−1)
← det(𝐴−1𝐵) = det(𝐵)

det(𝐴) .

Substituting into the regret bound, the sum telescopes and it entails

𝑅𝑇 ≤ 2𝛽 (1/𝑇 2)

√︄
𝑇 log

(
det(𝑉𝑇 )
det(𝑉0)

)
.

Then, using𝑉0
def
= 𝜆𝐼𝑑 and since𝑉𝑇 = 𝜆𝐼𝑑 +

∑𝑇
𝑡=1 𝜃𝑡𝜃

⊤
𝑡 with ∥𝜃𝑡 ∥ ≤ 1, all eigenvalues of𝑉𝑇 lie in [𝜆, 𝜆+𝑇 ]

which yields
det(𝑉0) = 𝜆𝑑 and det(𝑉𝑇 ) ≤

(
𝜆 +𝑇

)𝑑
.

Plugging back into the previous upper-bound and using that 𝛽 (1/𝑇 2) ≤ □𝜆
√︁
𝑑 log𝑇

𝑅𝑇 ≤ 2
√︂
𝑑𝑇 𝛽 (1/𝑇 ) log

(
1 + 𝑇

𝜆

)
≤ □𝜆𝑑

√
𝑇 log𝑇 .

Part 2: without the event (6.4) We because 𝑟𝑡 ≤ 2, almost surely 𝑅𝑇 ≤ 2𝑇 , and we have

𝑅𝑇 = E [𝑅𝑇 ] ≤ E
[
𝑅𝑇

��� Event (6.4)] P{Event (6.4)} + 2𝑇
(
1 − P{ Event (6.4)}

)
≤ □𝑑

√
𝑇 log𝑇 + 2 .

This concludes the proof. □

Better regret with assumptions It is worth pointing out that if we make additional assumptions, it
is possible to improve the regret bound 𝑂 (𝑑

√
𝑇 log𝑇 ). A first setting corresponds to the case where

the set of available actions at time 𝑡 is fixed and finite; i.e., the learner needs to choose 𝜃𝑡 ∈ Θ where
|Θ| = 𝐾 . Then, it is possible to achieve

𝑅𝑇 ≤ □
√︁
𝑇𝑑 log(𝑇𝐾) ,

which improves the previous bound by a factor
√
𝑑/log(𝐾) and improves the classical bound of UCB

𝑂 (
√︁
𝑇𝐾 log𝑇 ) by a factor 𝐾/

√
𝑑 . These improvements can be significant when 𝐾 ≫ 𝑑 ≫ 1. We refer

the curious reader to [Lattimore and Szepesvári, 2020, Chapter 22].

Another possible improvement when𝑑 ≫ 1 is to assume that 𝜇∗ is𝑚0-sparse (i.e., most of its components
are zero). Then under assumptions, one can get a regret of order 𝑂̃ (

√
𝑑𝑚0𝑇 ).

6.2 Other possible extensions of bandits

Note that there exist many different extensions of stochastic bandits to make it more realistic or with
improved regret.
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– Bandit with delays: For instance, consider the example of the website which wants to display ads.
The website does not observe if there is no click, he needs to fix some time after which he consider
that the visitor will not click, and if the visitor stays long on the webpage, the website may need
to display ads to other visitors before getting the rewards. There is thus delayed feedback the
website needs to deal with.

– Non stationarity
– Combinatorial bandits
– Dueling bandits
– ...

We refer the interested student to the monograph Lattimore and Szepesvári [2020] for more information
on these settings. Next week, we will deal with adversarial bandits.
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