
Sequential learning – Lesson 6
Lower Bounds / Best Arm Identification

Rémy Degenne
February 17, 2023

INRIA Lille-Nord Europe

1

Stochastic bandit

At each time step t = 1, . . . , T
- the player chooses an arm kt ∈ Θ (compact decision/parameter set, often
{1, . . . , K});

- the player observes the reward of the chosen arm only: Xktt ∼ νkt →
bandit feedback.

The goal of the player is to maximize their cumulative reward.

The main reference:

Tor Lattimore and Csaba Szepesvári, Bandit algorithms. Cambridge University Press, 2020.

(online on Tor Lattimore’s webpage)

2

Objective: Regret Minimization

Goal until now: minimize the “cumulated” (pseudo)-regret: sum over all rounds.

RT = Tµ∗ −
T∑
t=1

µkt .

Strategy: exploit to minimize the current regret (based on past information) or explore to
gain more info.

3

This Lecture

- Lower bounds on the regret.
Does the regret have to be O(log(T)/∆)? Is UCB a good algorithm?

- Best arm identification: a pure exploration task.
What if we don’t want to minimize the regret, but want to know the identity of the
arm with highest mean?

4

UCB

Finitely many arms, no contexts.

Initialization For rounds t = 1, . . . , K pull arm kt = t.
For t = K+ 1, . . . , T, choose

kt ∈ arg max
k∈[K]

{
µ̂kt−1 +

√
2 log t
Nkt−1

}
,

and get reward Xktt .

5

UCB Regret Bounds

Theorem 1
If the distributions νk have supports all included in [0, 1] then for all k such that ∆k > 0

E
[
NkT

]
⩽ 8 log T

∆2
k

+ 2 .

In particular, this implies that the expected regret of UCB is upper-bounded as

E[RT] ⩽ 2K+
∑

k:∆k>0

8 log T
∆k

.

Remarks :
- we can also prove E[RT] ≲

√
KT log(T). Close to the optimal O(

√
KT).

- Deals with multiple gaps, without any knowledge of the gaps.
- Anytime algorithm: does not depend on T.

6

Lower Bounds

Best Arm Identification

7

Why can’t we have zero regret?

Consider bandit problem with means µ = (µ1, . . . , µK) with µ1 = maxk µk.

Algorithm: pull only arm 1. → zero regret!

But linear regret if 1 is not the best arm.

Theorem 2 (Regret of UCB)
If the distributions νk have supports all included in [0, 1] then for all k such that ∆k > 0

E[RT] ⩽ 2K+
∑

k:∆k>0

8 log T
∆k

.

→ low regret for all distributions with support in [0, 1].

8

What makes the deterministic algorithm or FTL bad

If an algorithm does not pull arm k, it has no information on its mean µk.

⇒ it cannot exclude the possibility that µk = maxj µj.

⇒ it may think that ∗ = 1 in a problem in which ∗ = j and get high regret.

The algorithm needs to explore all arms to distinguish the current bandit problem from
alternatives in which the best arm is different.

Our goal in this section: show that a “good” algorithm has to pull all arms. We want
“good”⇒ E[NkT] ≥ f(T,∆).

9

Result

Definition (Asymptotically correct)
An algorithm for stochastic bandit regret minimization is said to be asymptotically
correct if for all ν = (ν1, . . . , νk) with supports in [0, 1],

Eν [RT] = o(Tα) for all α > 0 .

Theorem 3
For all asymptotically correct algorithms, for all arms k with ∆k > 0,

lim inf
T→+∞

Eν [NkT]
log T ≥ 1

inf{KL(νk, ν′)|EX∼ν′ [X] > µ∗}
.

where µ∗ = maxk EX∼νk [X].

Regret lower bound: lim infT→+∞
ERT
log T ≥

∑
k:∆k>0

∆k
inf{KL(νk,ν′)|EX∼ν′ [X]>µ∗} .

10

Tools from information theory

Definition (Absolute continuity)
A probability measure ν is said to be absolutely continuous with respect to another
probability measure ν′, which we denote by ν ≪ ν′, if for all events A,
ν′(A) = 0 ⇒ ν(A) = 0.

Definition (Kullback-Leibler divergence)
The Kullback-Leibler divergence (or relative entropy) of distribution ν with respect to ν′

is defined as

KL(ν, ν′) =

∫
Ω
log dPν

dPν′
(ω)dPν(ω) if ν ≪ ν′

+∞ otherwise
,

where dPν

dPν′
is the Radon–Nikodym derivative of ν with respect to ν′.

11

Kullback-Leibler Divergence

KL(ν, ν′) =

 EX∼ν

[
log dPν

dPν′
(X)

]
if ν ≪ ν′

+∞ otherwise
,

Properties:
- KL is non-negative (proved using the concavity of the log).
- KL is jointly convex: For λ ∈ [0, 1] and ν1, ν2, ν

′
1, ν

′
2,

KL(λν1 + (1− λ)ν2, λν
′
1 + (1− λ)ν′2) ≤ λKL(ν1, ν′1) + (1− λ)KL(ν2, ν′2) .

- KL is not symmetric and does not verify the triangle inequality. It is not a distance.

The Kullback-Leibler divergence is our measure of how much ν appears different from ν′

when sampling from ν .

12

Lower bound

We want to show asymptotically correct⇒ E[NkT] ≥ f(T,∆).

Asymptotically correct =⇒ the algorithm pulls different arms on instances where the
best arm is different.

Main idea: to have a different behavior on these instances, the algorithm needs to
distinguish the current ν from any ν′ with different best arm. Let Ht,ν = (k1, X1, . . . , kt, Xt)
be the random variable that stores the history until time t when the rewards have
distributions (ν1, . . . , νK).

→ KL(HT,ν ,HT,ν′) has to be large enough.

Can we compute that KL?

13

Data processing inequality

Theorem 4 (Data processing inequality)
Let X, Y ∈ X be random variables, let U ∈ U be independent of X and Y, and let
φ : X × U → Z be a measurable function. Then

KL(φ(X,U), φ(Y,U)) ≤ KL(X, Y) .

(we write KL(X, Y) for the KL between the distributions of X and Y)

“Processing” random variables can only lose information and make them closer in KL.

Let Ht,ν = (k1, X1, . . . , kt, Xt) be the random variable that stores the history until time t
when the rewards have distributions (ν1, . . . , νK). Let Zk,ν = I{U ≤ NkT

T } be a Bernoulli
random variable with value 1 if U with uniform distribution is smaller than the fraction of
pulls NkT

T . Then

KL(Ht,ν ,Ht,ν′) ≥ KL(Zk,ν , Zt,ν′) = KL(B(Eν [
NkT
T]),B(Eν′ [

NkT
T]))

14

Chain rule for KL

Define KL((X|Y)ν , (X|Y)ν′) = Ey∼PYν [KL((X|Y = y)ν , (X|Y = y)ν′)] .

Then we have the chain rule

KL((X, Y)ν , (X, Y)ν′) = KL((X|Y)ν , (X|Y)ν′) + KL(Yν , Yν′) .

Example for a Markov chain: Z→ Y→ X:

KL((X, Y, Z)ν , (X, Y, Z)ν′) = KL((X|Y)ν , (X|Y)ν′) + KL((Y|Z)ν , (Y|Z)ν′) + KL(Zν , Zν′) .

15

KL Divergence in a bandit problem

Two bandit problems with arm distributions given by ν and ν′.

Ht,ν = (k1, X1, . . . , kt, Xt) : history until time t when the rewards have distributions given by
ν = (ν1, . . . , νK).

Decision model Ht−1 → kt → Xt.

We get from the chain rule:

KL(Ht,ν ,Ht,ν′) =
∑
k

Eν [Nkt]KL(νk, ν′k) .

16

Lower bound

We want to show asymptotically correct⇒ E[NkT] ≥ f(T,∆).

Asymptotically correct implies that the algorithm pulls different arms on instances where
∗ is different.

Suppose that ν is such that ∗ = 1 and ν′ is such that there exists j with µ′
j > µ1 and

ν′k = νk for k ̸= j.

We have shown
- KL(Ht,ν ,Ht,ν′) =

∑
k Eν [Nkt]KL(νk, ν′k) ,

- KL(Hν
t ,Hν′

t) ≥ KL(B(Eν [
NkT
T]),B(Eν′ [

NkT
T])) ,

Then for our specific ν, ν′,

Eν [Njt]KL(νj, ν′j) = KL(Ht,ν ,Ht,ν′) ≥ KL(B(Eν [
NjT
T]),B(Eν′ [

NjT
T])) .

17

Lower bound

KL(B(a),B(b)) = a log a
b + (1− a) log 1−a

1−b ≥ a log 1
b + (1− a) log 1

1−b − log 2.

Eν [Njt]KL(νj, ν′j) ≥ (1− Eν [
NjT
T]) log

T
T− Eν′ [NjT]

− log 2 .

Now use the asymptotically correct hypothethis to get Eν [
NjT
T] → 0 and T− Eν′ [NjT] = o(Tα)

for all α > 0. We obtain

lim inf
T→+∞

Eν [Njt]KL(νj, ν′j)
log T ≥ 1 .

This is valid for all ν′ that differ from ν only on arm j, with µ′
j > µ1, hence we can take a

supremum over the inequalities obtained for each such ν′.

18

Results

Theorem 5
For all asymptotically correct algorithms, for all arms k with ∆k > 0,

lim inf
T→+∞

Eν [NkT]
log T ≥ 1

inf{KL(νk, ν′k)|EX∼ν′
k
[X] ≥ µ∗}

.

Regret lower bound: lim infT→+∞
Eν [RT]
log T ≥

∑
k:∆k>0

∆k
inf{KL(νk,ν′

k)|EX∼ν′
k
[X]≥µ∗} .

UCB upper bound: E[RT] ≲
∑

k:∆k>0
log T
∆k
.

For Gaussians N (·, 1) : KL(νa, νb) = 1
2 (µa − µb)

2.

19

Improvements

The asymptotically correct condition can be replaced by a finite time condition.

Example: sub-UCB, if the regret verifies E[RT] ≤ C1
∑

k
log T
∆k

+ C2
∑

k∆k.

The complexity term reflects prior information about the allowed distributionsM:

inf{KL(νk, ν′k)|ν′k ∈ Mk ∧ EX∼ν′
k
[X] ≥ µ∗}

Example: we may know that all arms have Bernoulli distributions.

20

Lower Bounds

Best Arm Identification

21

Identification

At each time step t = 1, . . . , τ
- the player chooses an arm kt ∈ Θ (compact decision/parameter set, often
{1, . . . , K});

- the player observes the reward of the chosen arm only: Xktt ∼ νkt ;
- the player either stops or continues.

When the player stops: it returns an answer î.
Example: an arm, answer to the question “which arm has highest mean?”

The goal of the player is to return the correct answer with high probability, as soon
as possible.

22

Goals

Question: which arm has highest mean?

The goal of the player is to return the correct answer with high probability, as soon as
possible.

Several variables in what makes an algorithm good:
- τ : (random) time at which the algorithm stops.
- δ = P(̂i ̸= ∗): probability of mistake.

Possible settings:
- Fixed budget: for τ = T known beforehand, minimize δ.
- Fixed confidence: for fixed δ, ensure that P(error) ≤ δ and minimize τ .

– minimize E[τ] or
– minimize T such that with probability 1− δ, the algorithm is correct and τ ≤ T.

23

Fixed confidence BAI

Question: which arm has highest mean?

Task: sample arms, then decide to stop (stopping time τ) and recommend î ∈ [K].

Requirement: P(τ < +∞∧ î = ∗) ≥ 1− δ.

Goal: minimize E[τ], expected sample complexity.

24

Lower bound

Lower bound on bandits with Gaussian distributions. Distributions N (µk, 1).

For µ ∈ RK, let alt(µ) = {λ ∈ RK|∗µ /∈ argmaxk λk}.

Theorem 6
An algorithm which is δ-correct on all problems with Gaussian arms with variance 1
verifies for all µ ∈ Rk

Eµ[τ] ≥
KL(B(δ),B(1− δ))

supw∈△K infλ∈alt(µ)
∑

k wk 12 (µk − λk)2
.

25

Optimal non-adaptive algorithm

Lower bound:

Eµ[τ] ≥
KL(B(δ),B(1− δ))

supw∈△K infλ∈alt(µ)
∑

k wk 12 (µk − λk)2
.

This suggests an optimal (for that lower bound) non-adaptive sampling allocation:

NT,opt = Twopt = T arg max
w∈△K

inf
λ∈alt(µ)

∑
k

wk
1
2 (µk − λk)

2 .

26

Algorithm: Track and Stop

Idea: estimate the oracle allocation and follow it.

It we have an estimate µ̂t ≈ µ, then by a continuity argument

wopt(µ̂t) = argmaxw∈△K infλ∈alt(µ)
∑

k wk 12 (µ̂t,k − λk)
2 ≈ wopt(µ) .

→ if we make sure that µ̂t ≈ µ, then we can sample

kt = argminNkt − twkopt(µ̂t) (tracking).

27

Stopping rule

When can we stop?

An answer: when we have enough information to state that µ /∈ alt(µ) with high enough
confidence.

How do we quantify that?

Generalized log-likelihood ratio:

LRT(µ, λ,Ht) = log
dPµ

dPλ
(Ht) =

t∑
s=1

log
dPN (µks ,1)

dPN (λks ,1)
(Xs)

GLRT(µ,Ht) = log
dPµ

supλ∈alt(µ) dPλ
(Ht) = inf

λ∈alt(µ)
log

dPµ

dPλ
(Ht)

Based on observations in Ht, LRT(µ, λ,Ht) is how likely µ is compared to λ.

Eµ[LRT(µ, λ)] = KL(Ht,µ,Ht,λ).

GLRT(µ,Ht) compares µ to its alternative set. 28

Stopping rule

Stopping rule: stop if GLRT(µ̂t,Ht) > log log t
δ (approximatively, up to constants).

Theorem 7
Any algorithm using the above stopping rule with the recommendation rule
î = argmaxk µ̂

k
t verifies, for all µ ∈ RK,

Pµ(τ < +∞∧ î ̸= ∗µ) ≤ δ

Together, stopping rule and recommendation rule ensure δ-correctness (provided that
the sampling rule ensures τ < +∞).

Proof: deviation bound on Pµ(LRT(µ̂t, µ,Ht) > ε).

29

Track and Stop

While GLRT(µ̂,Ht) ≤ log log t
δ ,

- Compute the oracle allocation wopt(µ̂t)
- If an arm has Nkt <

√
t, sample it. (forced exploration)

- Otherwise, sample kt = argmink Nkt − twkopt(µ̂t) (tracking)
Recommend î = argmaxk µ̂

k
τ .

Theorem: Track and Stop is asymptotically optimal, i.e.

lim sup
δ→0

Eµ[τ]

log 1
δ

≤ 1
supw∈△K infλ∈alt(µ)

∑
k wk 12 (µk − λk)2

.

30

Issues and Improvements

Track-and-Stop is computationally intensive due to the oracle allocation computation.

Forced exploration is wasteful.

An improvement: use an iterative algorithm to compute the oracle allocation, but do only
one iteration at a time.

A related improvement: use optimism in that iterative algorithm to avoid forced
exploration.

→ sample complexity bounds (i.e. bounds on E[τ]) for non-zero δ.

→ still no good bound for δ ≈ 0.1 .

31

Fixed Budget BAI

Fixed budget best arm identification:

- For t = 1, . . . , T, choose kt ∈ [K] and observe Xt ∼ νkt .
- Recommend î ∈ [K] after time T.
- Goal: minimize P(̂i ̸= ∗).

Complexities : H1 =
∑

k:∆k>0
1
∆2
k
, H2 = maxk:∆k>0

k
∆2

(k)
.

Property: H2 ≤ H1 ≤ log(2K)H2.

Lower bound: of order exp(−T/ log(K)H1) if H1 is unknown; of order exp(−T/H1) if known.

32

UCB-E

Parameter: exploration parameter a > 0.
For each round t = 1, . . . , T,
- Pull kt ∈ argmaxk µ̂

k
t +

√
a
Nkt
.

Recommend î ∈ argmaxk µ̂
k
T .

Theorem 8
If UCB-E is run with parameter 0 < a < 25

36
T−K
H1 , with H1 =

∑
k:∆k>0

1
∆2
k
, then it satisfies

P(̂i ̸= ∗) ≤ 2KT exp
(
− 2
25a

)
.

Issue: in order to match the lower bound, H1 has to be known.

33

References

Thank you!

Cesa-Bianchi, Nicolo and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Hazan, Elad et al. “Introduction to online convex optimization”. In:
Foundations and Trends® in Optimization 2.3-4 (2016), pp. 157–325.
Lattimore, Tor and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Shalev-Shwartz, Shai et al. “Online learning and online convex optimization”. In:
Foundations and Trends® in Machine Learning 4.2 (2012), pp. 107–194.

34

Advertisement: formalizing probability and bandits in Lean

Lean theorem prover: https://leanprover-community.github.io/

Current state: measure theory has solid bases. Probability theory not so much. We have
conditional expectation, martingales, independence.

Goal now: add results about martingales and concentration inequalities. Then we can
write the proof of the regret bound of UCB.

Then we’ll have machine-verified bandit proofs!

More exiting: automatic generation of proofs with machine learning. Example: gpt-f.

35

	Lower Bounds
	Best Arm Identification

