MVA 2024-25 P. Gaillard and R. Degenne

SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.

The exam is divided into two separate parts, each of which should be submitted on a separate
sheet.

Part 1. Online Convex Optimization

1. Let © C R% be a convex compact set and (4t : ©® = R)j<t<7 be a sequence of convex functions.
(a) Provide the pseudocode of Online Gradient Descent (OGD).

Solution: Intialize 6; € ©, (1¢) sequence of learning rate, and for ¢ > 1 update

0t+1 = Pl"Oj@ (¢9t — ntVEt(Ht)>

(b) Prove that OGD with step size 1, is equivalent to the update:

01 = aragrgin {(VEt(Ht),9> + Ae]|0 — «9t|\2}
€

for some regularization parameter ;. Give the expression of A\; as a function of 7.

Solution:

PI‘Oj@(et — ntVEt(Ht)> = aregergin H9 — 975 = Utv&g(et)”2

= argmiﬂ{ﬂa — 04|* + 2ne(VE(0:),0 — 6;) + 77t2||V5t(9t)||2}
0o
. 1 2
= argmin {(V@t(ﬁt), ) + 2_77tH9 — 04| }

0cO

(c) What is the connexion between OGD and Online Mirror Descent (OMD)? (Justify briefly)

Solution: The agile version of OMD defined by ;1 € argming{n(V¢;(0;),0)+Dy(6,0;)}
for some mirror map 1 is equivalent to OGD when 9 = %H - |[? as shown by previous
question.
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2. Assume that ¢; are i.i.d.. Let L = E[{/(-)], which we assume p-strongly convex, and 6, €
argmingcg L(6). Let Ry (6y) := Et 1 4e(0¢) — €4(65) be the regret of some online algorithm.

(a) Design a point f7 that controls its excess risk E[L(67) — L(6.)] as a function of E[Rp(6,)].
Solution: Defining 6 = % Z;‘F:l 0; we have by convexity
_ 1 &
E[L(6r) — L(6.)] = E L(T t:zl et) _ L(H*)]

T
<E TZL(@) —L(G*)]

(b) Prove an upper bound on E[[|67 — 6,]%].
Solution: Since L is u-strongly convex, we have
_ o 2/ _
107 — 017 < ;(L(fm — L(8.) + (VL(6.), 0, — Or) )

~~

<0

Taking the expectation we conclude E[||6r — 6,|?] < %E[RT(G*)] :

Problem: Optimistic Follow The Regularized Leader

Let © C R? such that 6; := 0 € ©. We assume that at each ¢t > 1, the learner tries to guess the
next gradient with some g;41 € R? and updates

Or 41 € arg Igin .(0), with  ®4(0) == (0,>""_; gs + i1 ) + 5|0]2
S

where g, = V{,(6;) and A > 0 is a regularization parameter. We assume gi = 0 and ®o(6) = 3/0||%.

3. Show that for all ¢ > 1 and 6, € ©, ®;_1(0;) — D4_1(04) < —3/|0; — 0|2

Solution: Let 6 € ©. Since 0; € argmin, ®;_1(0), we have (V®;_;(6;),0; — 0) < 0, which
entails by A-strong convexity of %H -||? and thus ®; 1,

A A
Dy 1(0;) — P4(0) < (VPy_1(6;), 0 — 0) — §||9t —9|” < —§||9t —0.1%.

4. Define 0,41 € arg mingcq {(0 S gs) + 2110)1?}. Show that for all t > 1 and 6, € ©
O 1(6:) < (0uy Yoy ) + (o1, G0 — 90) — 5110041 — 61> + 51641
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5. Deduce by induction on t that for all t > 1 and 0, € ©:

t
Z(es - 05+17§s> =+ <05+17gs> < <0*7 Zi:l gt> - %Eizl ||0t - ‘9t+1||2 + %”9*”2 .

s=1

6. Deduce that for any 6, € ©

T T i 5 N
Z(Ht —bi,90) < Z(Gt — 0141, 9t — Gi) — §||9t+1 —0* + 5“9*”2-

t=1 t=1
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7. Conclude by proving a regret upper bound that depends on Vg := Zthl llge — Ge||? for a well-
optimized X to be explicitly indicated.

Solution:

(0 — Ox, 9¢) <+ by convexity

B

T
> 4(6r) — £(6s) <
t=1

w
Il
iy

_ o A
(Or — Ot41,9¢ — Gr) — 5”9t+1 — 6,1 + 5”9*”2

~ 1 - A~ A
1006717 + 55 llge = Gell® = S18a=Bel + 511611
1
101/ 57, llge — el

B

w
I
iy

(VAN
B
N | >

~+~
I

for A = 1|67/ llgw — 31>

Part 2. Stochastic bandits

8. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has
linear expected regret. Prove that linear lower bound on the expected regret.

Solution: Bernoulli bandit with two arms with means p; > po. With probability (1 — w1 )pe
the first rewards seen are 0 for arm 1 and 1 for arm 2. Then the empirical mean of arm 2 is
positive while the empirical mean of arm 1 is 0: FTL will pull arm 2, and the empirical mean
of arm 2 remains positive while the empirical mean of arm 1 is still 0. FTL pulls arm 2 for
T — 1 rounds and gets regret (u; — po)(7T —1). The expected regret is bounded from below by

(1 — pr)po(pr — p2)(T — 1).

9. In fixed confidence best arm identification (BAI), an algorithm is d-correct if it returns the best
arm with probability at least 1 — 0.

(a) If an algorithm is d-correct on all bandits with Gaussian rewards, it satisfies a lower bound
on its expected stopping time E[75]. How does that lower bound depend on ¢, for small §7
Solution: log(1/d) (or kl(d,1 — J) but that’s the same as § — 0)

(b) Give an example of a d-correct algorithm for BAI with Gaussian rewards with variance 1.
Note that we are not asking for an algorithm with small sample complexity: any d-correct
algorithm suffices.
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Solution: Sample arms uniformly. Maintain confidence intervals on each arm (based on
Hoeffding’s inequality for example). Stop when the interval of the best arm (empirically)
does not intersect any other interval. When the algorithm stops, the arm is the best arm
unless one of the intervals did not contain the true mean of its arm. The intervals are
tuned such that this happens with probability less than 0.

Problem: c-greedy algorithm for stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with K € N arms
with K > 1, where each arm k € {1,..., K} is described by a distribution v, supported on [0, 1]
with mean ug. We suppose that p1 > py for all k € {2,..., K}. We call Ay = 1 — pg the gap of
arm k. When the algorithm pulls arm £; at time ¢, it observes a reward X, ;, sampled from vy, .

For i € N with ¢ > 1, we write [i{] = {1,...,i}. For two propositions p; and py, the expression
p1 A pg means p; and po.

The e-greedy algorithm depends on a sequence of parameters 1, €2, ... in [0, 1]. First, the algorithm

pulls each arm once. Then at time ¢t > K, let Nt’il = Zi;ll Lx,—x) be the number of times arm k

was chosen up to time ¢ — 1 and let if | = N% Zi;ll Xs ko Lig,—k) - With probability 1 — &¢, the
t—1

e-greedy algorithm pulls the arm k; = arg max;, ﬁf_l; with probability e;, it pulls an arm uniformly
at random. Let Z; be the Bernoulli random variable with expectation ; with value 1 if the arm is
chosen uniformly and 0 otherwise.

Let the regret of the algorithm at time T be Ry = T — Zle L, -
10. Prove that E[Ry] = S5, Ay E[NE]

Solution: See lecture notes.

11. What is the expectation mp of Zthl Z; 7 Give an upper bound on P {Zthl Zy —mp > Tx}
that is exponentially decreasing in 7.

Solution: mp = Zthl Et.

Since Z; — € is bounded in an interval of length 1, it is (1/4)-sub-Gaussian. By Hoeffding’s
inequality,

T T
P {Z Zy — Zst > Tx} < exp(—2Tz?).

t=1 t=1

In the next questions, we suppose that ¢, = ¢ € [0,1] for all ¢ € N.

We introduce the notation N Zt = 22:1 1¢z,—=1 A ko=k}, Which corresponds to the number of pulls
of arm k due to the uniform exploration. Let & be the event that for all £ € [K] and ¢t € [T,

NE, —tg| <y/5log(2KT?).
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12. Prove that

K T K
E[RT] < TIP’(S%) mkax A+ ; Ap t_Zl]P{ST ANZy=0ANk = k‘} + I; AkE[NE,T]l{gT}] . (1)

13. (a) Fort > 1, k € [K]|, what is the law of the random variable with value 1 if both Z; = 1 and
k: = k, and value 0 otherwise?

(b) Let 6 € (0,1), t € [T] and k € [K]|. By showing two concentration inequalities and doing
an union bound, prove that with probability 1 — 6,

€ t 2
‘Ng,t _tE’ </ §log3. (2)
< /5 1log(2KT?).

Deduce that with probability 1— £, for all k € [K] and t € [T7], ‘N gt —-ig
That is, P(r) > 1 — .
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14. (a) Suppose that T > %{;log@KTz). For ¢t € [T] such that t > %{;log@KTz) and k # 1,
show an upper bound on P{Er A ¥ > fi}} of the form Cjtexp(—tCy) where Cy and Cy
may depend on the parameters of the problem but not on .

(b) Deduce an upper bound on E?:l P{&r N Z; =0 A k; =k} for k # 1. Your bound can be
expressed as a function of the quantity Cexp(a) := Y ;o te '

(c) Prove that limsupy_,, =7 < = S Ay
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15. Prove that limy_,eo y?—Tl =% ZkK:2 Ap.
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