
MVA 2024-25 P. Gaillard and R. Degenne

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.

The exam is divided into two separate parts, each of which should be submitted on a separate
sheet.

Part 1. Online Convex Optimization

1. Let Θ ⊂ Rd be a convex compact set and (ℓt : Θ→ R)1≤t≤T be a sequence of convex functions.

(a) Provide the pseudocode of Online Gradient Descent (OGD).

Solution: Intialize θ1 ∈ Θ, (ηt) sequence of learning rate, and for t ≥ 1 update

θt+1 = ProjΘ

(
θt − ηt∇ℓt(θt)

)
(b) Prove that OGD with step size ηt is equivalent to the update:

θt+1 = argmin
θ∈Θ

{
⟨∇ℓt(θt), θ⟩+ λt∥θ − θt∥2

}
for some regularization parameter λt. Give the expression of λt as a function of ηt.

Solution:

ProjΘ

(
θt − ηt∇ℓt(θt)

)
= argmin

θ∈Θ

∥∥∥θ − θt + ηt∇ℓt(θt)
∥∥2

= argmin
θ∈Θ

{
∥θ − θt∥2 + 2ηt⟨∇ℓt(θt), θ − θt⟩+ η2t ∥∇ℓt(θt)∥2

}
= argmin

θ∈Θ

{
⟨∇ℓt(θt), θ⟩+

1

2ηt
∥θ − θt∥2

}

(c) What is the connexion between OGD and Online Mirror Descent (OMD)? (Justify briefly)

Solution: The agile version of OMD defined by θt+1 ∈ argminθ{η⟨∇ℓt(θt), θ⟩+Dψ(θ, θt)}
for some mirror map ψ is equivalent to OGD when ψ = 1

2∥ · ∥
2 as shown by previous

question.
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2. Assume that ℓt are i.i.d.. Let L = E[ℓt( · )], which we assume µ-strongly convex, and θ∗ ∈
argminθ∈Θ L(θ). Let RT (θ∗) :=

∑T
t=1 ℓt(θt)− ℓt(θ∗) be the regret of some online algorithm.

(a) Design a point θ̄T that controls its excess risk E
[
L(θ̄T )−L(θ∗)

]
as a function of E

[
RT (θ∗)

]
.

Solution: Defining θ̄T = 1
T

∑T
t=1 θt we have by convexity

E
[
L(θ̄T )− L(θ∗)] = E

[
L
( 1

T

T∑
t=1

θt

)
− L(θ∗)

]

≤ E

[
1

T

T∑
t=1

L(θt)− L(θ∗)

]

= E

[
1

T

T∑
t=1

ℓt(θt)− ℓt(θ∗)

]
=

E[RT (θ∗)]
T

.

(b) Prove an upper bound on E
[
∥θ̄T − θ∗∥2

]
.

Solution: Since L is µ-strongly convex, we have

∥θ̄T − θ∗∥2 ≤
2

µ

(
L(θ̄T )− L(θ∗) + ⟨∇L(θ∗), θ∗ − θ̄T ⟩︸ ︷︷ ︸

≤0

)

Taking the expectation we conclude E
[
∥θ̄T − θ∗∥2

]
≤ 2

µT E
[
RT (θ∗)] .

Problem: Optimistic Follow The Regularized Leader

Let Θ ⊆ Rd such that θ1 := 0 ∈ Θ. We assume that at each t ≥ 1, the learner tries to guess the
next gradient with some ĝt+1 ∈ Rd and updates

θt+1 ∈ argmin
θ∈Θ

Φt(θ), with Φt(θ) :=
〈
θ,
∑t

s=1 gs + ĝt+1

〉
+ λ

2∥θ∥
2

where gs = ∇ℓs(θs) and λ > 0 is a regularization parameter. We assume ĝ1 = 0 and Φ0(θ) =
λ
2∥θ∥

2.

3. Show that for all t ≥ 1 and θ∗ ∈ Θ, Φt−1(θt)− Φt−1(θ∗) ≤ −λ
2∥θt − θ∗∥

2 .

Solution: Let θ ∈ Θ. Since θt ∈ argminθ Φt−1(θ), we have ⟨∇Φt−1(θt), θt − θ⟩ ≤ 0, which
entails by λ-strong convexity of λ

2∥ · ∥
2 and thus Φt−1,

Φt−1(θt)− Φt(θ) ≤ ⟨∇Φt−1(θt), θt − θ⟩ −
λ

2
∥θt − θ∥2 ≤ −

λ

2
∥θt − θ∗∥2 .

4. Define θ̃t+1 ∈ argminθ∈Θ
{
⟨θ,

∑t
s=1 gs⟩+

λ
2∥θ∥

2
}
. Show that for all t ≥ 1 and θ∗ ∈ Θ

Φt−1(θt) ≤ ⟨θ∗,
∑t

s=1 gs⟩+ ⟨θ̃t+1, ĝt − gt⟩ − λ
2∥θ̃t+1 − θt∥2 + λ

2∥θ∗∥
2
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Solution:

Φt−1(θt) ≤ Φt−1(θ̃t+1)−
λ

2
∥θ̃t+1 − θt∥2

=
〈
θ,
∑t−1

s=1 gs + ĝt
〉
+ λ

2∥θ̃t+1∥2 − λ
2∥θ̃t+1 − θt∥2 ← by Q.4

=
〈
θ̃t+1,

∑t
s=1 gs

〉
+ λ

2∥θ̃t+1∥2 + ⟨θ̃t+1, ĝt − gt⟩ − λ
2∥θ̃t+1 − θt∥2

≤ ⟨θ∗,
∑t

s=1 gs
〉
+ λ

2∥θ∗∥
2 + ⟨θ̃t+1, ĝt − gt⟩ − λ

2∥θ̃t+1 − θt∥2 ← by def of θ̃t+1

5. Deduce by induction on t that for all t ≥ 1 and θ∗ ∈ Θ:
t∑

s=1

⟨θs − θ̃s+1, ĝs⟩+ ⟨θ̃s+1, gs⟩ ≤ ⟨θ∗,
∑t

s=1 gt⟩ −
λ
2

∑t
s=1 ∥θt − θ̃t+1∥2 + λ

2∥θ∗∥
2 .

Solution: The base case t = 1 is immediate since ĝ1 = 0. Assume the above inequality holds
at t− 1, then applying it with θ∗ = θt yields

t∑
s=1

⟨θs − θ̃s+1, ĝs⟩+ ⟨θ̃s+1, gs⟩

induction
≤ ⟨θt,

∑t−1
s=1 gs⟩+

λ
2∥θt∥

2 − λ
2

∑t−1
s=1 ∥θ̃s+1 − θs∥2 + ⟨θt − θ̃t+1, ĝt⟩+ ⟨θ̃t+1, gt⟩

= Φt−1(θt)− ⟨θ̃t+1, ĝt − gt⟩ −
λ

2

t−1∑
s=1

∥θ̃s+1 − θs∥2

= ⟨θ∗,
∑t

s=1 gs⟩ −
λ
2

∑t
s=1 ∥θ̃s+1 − θs∥2 + λ

2∥θ∗∥
2

6. Deduce that for any θ∗ ∈ Θ

T∑
t=1

⟨θt − θ∗, gt⟩ ≤
T∑
t=1

⟨θt − θ̃t+1, gt − ĝt⟩ −
λ

2
∥θ̃t+1 − θt∥2 +

λ

2
∥θ∗∥2 .

Solution:

T∑
t=1

⟨θt − θ∗, gt⟩ =
T∑
t=1

⟨θt − θ̃t+1, gt − ĝt⟩+ ⟨θt − θ̃t+1, ĝt⟩+ ⟨θ̃t+1, gt⟩ − ⟨θ∗, gt⟩

≤
T∑
t=1

⟨θt − θ̃t+1, gt − ĝt⟩ −
λ

2
∥θ̃t+1 − θt∥2 +

λ

2
∥θ∗∥2

where the inequality is by previous question.
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7. Conclude by proving a regret upper bound that depends on VT :=
∑T

t=1 ∥gt − ĝt∥2 for a well-
optimized λ to be explicitly indicated.

Solution:

T∑
t=1

ℓt(θt)− ℓt(θ∗) ≤
T∑
t=1

⟨θt − θ∗, gt⟩ ← by convexity

≤
T∑
t=1

⟨θt − θ̃t+1, gt − ĝt⟩ −
λ

2
∥θ̃t+1 − θt∥2 +

λ

2
∥θ∗∥2

≤
T∑
t=1

λ

2�
�����
∥θt − θ̃t+1∥2 +

1

2λ
∥gt − ĝt∥2 −

λ

2�
�����
∥θ̃t+1 − θt∥2 +

λ

2
∥θ∗∥2

= ∥θ∗∥
√∑T

t=1 ∥gt − ĝt∥2

for λ = ∥θ∗∥−1
√∑T

t=1 ∥gt − ĝt∥2.

Part 2. Stochastic bandits

8. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has
linear expected regret. Prove that linear lower bound on the expected regret.

Solution: Bernoulli bandit with two arms with means µ1 > µ2. With probability (1− µ1)µ2
the first rewards seen are 0 for arm 1 and 1 for arm 2. Then the empirical mean of arm 2 is
positive while the empirical mean of arm 1 is 0: FTL will pull arm 2, and the empirical mean
of arm 2 remains positive while the empirical mean of arm 1 is still 0. FTL pulls arm 2 for
T − 1 rounds and gets regret (µ1−µ2)(T − 1). The expected regret is bounded from below by
(1− µ1)µ2(µ1 − µ2)(T − 1).

9. In fixed confidence best arm identification (BAI), an algorithm is δ-correct if it returns the best
arm with probability at least 1− δ.
(a) If an algorithm is δ-correct on all bandits with Gaussian rewards, it satisfies a lower bound

on its expected stopping time E[τδ]. How does that lower bound depend on δ, for small δ?

Solution: log(1/δ) (or kl(δ, 1− δ) but that’s the same as δ → 0)

(b) Give an example of a δ-correct algorithm for BAI with Gaussian rewards with variance 1.
Note that we are not asking for an algorithm with small sample complexity: any δ-correct
algorithm suffices.
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Solution: Sample arms uniformly. Maintain confidence intervals on each arm (based on
Hoeffding’s inequality for example). Stop when the interval of the best arm (empirically)
does not intersect any other interval. When the algorithm stops, the arm is the best arm
unless one of the intervals did not contain the true mean of its arm. The intervals are
tuned such that this happens with probability less than δ.

Problem: ε-greedy algorithm for stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with K ∈ N arms
with K > 1, where each arm k ∈ {1, . . . ,K} is described by a distribution νk supported on [0, 1]
with mean µk. We suppose that µ1 > µk for all k ∈ {2, . . . ,K}. We call ∆k = µ1 − µk the gap of
arm k. When the algorithm pulls arm kt at time t, it observes a reward Xt,kt sampled from νkt .

For i ∈ N with i ≥ 1, we write [i] = {1, . . . , i}. For two propositions p1 and p2, the expression
p1 ∧ p2 means p1 and p2.

The ε-greedy algorithm depends on a sequence of parameters ε1, ε2, . . . in [0, 1]. First, the algorithm
pulls each arm once. Then at time t > K, let Nk

t−1 =
∑t−1

s=1 1{ks=k} be the number of times arm k

was chosen up to time t − 1 and let µ̂kt−1 = 1
Nk

t−1

∑t−1
s=1Xs,ks1{ks=k} . With probability 1 − εt, the

ε-greedy algorithm pulls the arm kt = argmaxk µ̂
k
t−1; with probability εt, it pulls an arm uniformly

at random. Let Zt be the Bernoulli random variable with expectation εt with value 1 if the arm is
chosen uniformly and 0 otherwise.

Let the regret of the algorithm at time T be RT = Tµ1 −
∑T

t=1 µkt .

10. Prove that E[RT ] =
∑K

k=2∆kE[Nk
T ] .

Solution: See lecture notes.

11. What is the expectation mT of
∑T

t=1 Zt ? Give an upper bound on P
{∑T

t=1 Zt −mT ≥ Tx
}

that is exponentially decreasing in T .

Solution: mT =
∑T

t=1 εt.

Since Zt − εt is bounded in an interval of length 1, it is (1/4)-sub-Gaussian. By Hoeffding’s
inequality,

P

{
T∑
t=1

Zt −
T∑
t=1

εt ≥ Tx

}
≤ exp(−2Tx2) .

In the next questions, we suppose that εt = ε ∈ [0, 1] for all t ∈ N.

We introduce the notation Nk
Z,t =

∑t
s=1 1{Zs=1 ∧ ks=k}, which corresponds to the number of pulls

of arm k due to the uniform exploration. Let ET be the event that for all k ∈ [K] and t ∈ [T ],∣∣∣Nk
Z,t − t

ε
K

∣∣∣ ≤√
t
2 log(2KT

2).

Page 5



MVA 2024-25 Final Examination P. Gaillard and R. Degenne

12. Prove that

E[RT ] ≤ TP(EcT )max
k

∆k +

K∑
k=1

∆k

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}+
K∑
k=1

∆kE[Nk
Z,T1{ET }] . (1)

Solution:

E[RT ] = E[
T∑
t=1

∆kt ]

= E[
T∑
t=1

∆kt1{Ec
T }] + E[

T∑
t=1

∆kt1{ET }]

The first term is less than T∆maxP(EcT ), which is the first term in the bound we want to prove.

E[
T∑
t=1

∆kt1{ET }] =

K∑
k=1

∆kE[
T∑
t=1

1{ET ∧ kt=k}]

=
K∑
k=1

∆kE[
T∑
t=1

1{ET ∧ Zt=0 ∧ kt=k}] +
K∑
k=1

∆kE[
T∑
t=1

1{ET ∧ Zt=1 ∧ kt=k}]

=
K∑
k=1

∆k

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}+
K∑
k=1

∆kE[1{ET }

T∑
t=1

1{Zt=1 ∧ kt=k}] .

13. (a) For t ≥ 1, k ∈ [K], what is the law of the random variable with value 1 if both Zt = 1 and
kt = k, and value 0 otherwise?

Solution: It’s a Bernoulli(ε/K).

(b) Let δ ∈ (0, 1), t ∈ [T ] and k ∈ [K]. By showing two concentration inequalities and doing
an union bound, prove that with probability 1− δ,∣∣∣Nk

Z,t − t
ε

K

∣∣∣ ≤√
t

2
log

2

δ
. (2)

Deduce that with probability 1− 1
T , for all k ∈ [K] and t ∈ [T ],

∣∣∣Nk
Z,t − t

ε
K

∣∣∣ ≤√
t
2 log(2KT

2).
That is, P(ET ) ≥ 1− 1

T .

Solution: Nk
Z,t is the sum of t Bernoulli random variables with expectation ε/K (which

correspond to the uniform exploration pulls of k). The first inequality is the result of
Hoeffding’s inequality twice, once for each tail, and an union bound over the two events.
The second inequality is the result of union bounds over k ∈ [K] and t ∈ [T ] and the
choice δ = 1/T .
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14. (a) Suppose that T ≥ 2K2

ε2
log(2KT 2). For t ∈ [T ] such that t ≥ 2K2

ε2
log(2KT 2) and k ̸= 1,

show an upper bound on P{ET ∧ µ̂kt > µ̂1t } of the form C1t exp(−tC2) where C1 and C2

may depend on the parameters of the problem but not on t.

Solution: Using the fact that Nk
t ≥ Nk

Z,t, the definition of ET and finally the lower bound
on t, we get

P{ET ∧ µ̂kt > µ̂1t } ≤ P{min{Nk
t , N

1
t } ≥ t

ε

K
−
√
t

2
log(2KT 2) ∧ µ̂kt > µ̂1t }

≤ P{min{Nk
t , N

1
t } ≥ t

ε

2K
∧ µ̂kt > µ̂1t } .

If µ̂kt > µ̂1t then either µ̂kt ≥ µk +∆k/2 or µ̂1t ≤ µ1 −∆k/2. By a union bound,

P{min{Nk
t , N

1
t } ≥ t

ε

2K
∧ µ̂kt > µ̂1t }

≤ P{Nk
t ≥ t

ε

2K
∧ µ̂kt ≥ µk +∆k/2}+ P{N1

t ≥ t
ε

2K
∧ µ̂1t ≤ µ1 −∆k/2} .

We bound each of the two parts in a similar way. We first do an union bound over the
possible values of Nk

t , then use Hoeffding’s inequality.

P{Nk
t ≥ t

ε

2K
∧ µ̂kt ≥ µk +∆k/2} ≤

t∑
s=⌊t ε

2K
⌋

P{Nk
t = s ∧ µ̂kt ≥ µk +∆k/2}

≤
t∑

s=⌊t ε
2K

⌋

exp(−s∆2
k/2)

≤ t exp(−t
ε∆2

k

4K
)

(b) Deduce an upper bound on
∑T

t=1 P{ET ∧ Zt = 0 ∧ kt = k} for k ̸= 1. Your bound can be
expressed as a function of the quantity Cexp(a) :=

∑∞
t=1 te

−ta.

Solution:

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}

≤ 2K2

ε2
log(2KT 2) +

∑
t≥ 2K2

ε2
log(2KT 2)

2t exp

(
−t
ε∆2

k

4K

)

≤ 2K2

ε2
log(2KT 2) +

∑
t≥ 2K2

ε2
log(2KT 2)

2t exp

(
−t
ε∆2

k

4K

)

≤ 2K2

ε2
log(2KT 2) + 2Cexp(

ε∆2
k

4K
) .

(c) Prove that lim supT→∞
E[RT ]
T ≤ ε

K

∑K
k=2∆k.
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Solution: We proved in Question 12 that

E[RT ] ≤ TP(EcT )max
k

∆k +

K∑
k=1

∆k

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}+
K∑
k=1

∆kE[Nk
Z,T1{ET }] .

(3)

We also proved P(EcT ) ≤ 1/T in Question 13, such that the first term of the right hand
side vanishes when divided by 1/T . So we have

lim sup
T→∞

E[RT ]
T

≤ lim sup
T→∞

1

T

K∑
k=1

∆k

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}

+ lim sup
T→∞

1

T

K∑
k=1

∆kE[Nk
Z,T1{ET }] .

Question 14b shows that the first term vanishes.
The definition of ET gives Nk

Z,T ≤ T
ε
K + o(T ). The only non-vanishing part corresponds

to that T ε
K upper bounds and gives the result.

15. Prove that limT→∞
E[RT ]
T = ε

K

∑K
k=2∆k.

Solution: One inequality is given by the previous question. We now prove the other one.

We have the lower bound on the regret E[RT ] ≥
∑K

k=1∆kE[Nk
Z,T1{ET }].

Then use the definition of ET to get a lower bound T ε
K − o(T ) for Nk

Z,T and use that P(ET ) ≥
1− 1

T to get

E[RT ] ≥
K∑
k=2

∆kE[Nk
Z,T1{ET }]

≥
K∑
k=2

∆kT
ε

K
− o(T ) .
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