
MVA 2024-25 P. Gaillard and R. Degenne

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.

The exam is divided into two separate parts, each of which should be submitted on a separate
sheet.

Part 1. Online Convex Optimization

1. Let Θ ⊂ Rd be a convex compact set and (ℓt : Θ → R)1≤t≤T be a sequence of convex functions.

(a) Provide the pseudocode of Online Gradient Descent (OGD).
(b) Prove that OGD with step size ηt is equivalent to the update:

θt+1 = argmin
θ∈Θ

{
⟨∇ℓt(θt), θ⟩+ λt∥θ − θt∥2

}
for some regularization parameter λt. Give the expression of λt as a function of ηt.

(c) What is the connexion between OGD and Online Mirror Descent (OMD)? (Justify briefly)

2. Assume that ℓt are i.i.d.. Let L = E[ℓt( · )], which we assume µ-strongly convex, and θ∗ ∈
argminθ∈Θ L(θ). Let RT (θ∗) :=

∑T
t=1 ℓt(θt)− ℓt(θ∗) be the regret of some online algorithm.

(a) Design a point θ̄T that controls its excess risk E
[
L(θ̄T )−L(θ∗)

]
as a function of E

[
RT (θ∗)

]
.

(b) Prove an upper bound on E
[
∥θ̄T − θ∗∥2

]
.

Problem: Optimistic Follow The Regularized Leader

Let Θ ⊆ Rd such that θ1 := 0 ∈ Θ. We assume that at each t ≥ 1, the learner tries to guess the
next gradient with some ĝt+1 ∈ Rd and updates

θt+1 ∈ argmin
θ∈Θ

Φt(θ), with Φt(θ) :=
〈
θ,
∑t

s=1 gs + ĝt+1

〉
+ λ

2∥θ∥
2

where gs = ∇ℓs(θs) and λ > 0 is a regularization parameter. We assume ĝ1 = 0 and Φ0(θ) =
λ
2∥θ∥

2.

3. Show that for all t ≥ 1 and θ∗ ∈ Θ, Φt−1(θt)− Φt−1(θ∗) ≤ −λ
2∥θt − θ∗∥2 .

4. Define θ̃t+1 ∈ argminθ∈Θ
{
⟨θ,

∑t
s=1 gs⟩+

λ
2∥θ∥

2
}
. Show that for all t ≥ 1 and θ∗ ∈ Θ

Φt−1(θt) ≤ ⟨θ∗,
∑t

s=1 gs⟩+ ⟨θ̃t+1, ĝt − gt⟩ − λ
2∥θ̃t+1 − θt∥2 + λ

2∥θ∗∥
2
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5. Deduce by induction on t that for all t ≥ 1 and θ∗ ∈ Θ:
t∑

s=1

⟨θs − θ̃s+1, ĝs⟩+ ⟨θ̃s+1, gs⟩ ≤ ⟨θ∗,
∑t

s=1 gt⟩ −
λ
2

∑t
s=1 ∥θt − θ̃t+1∥2 + λ

2∥θ∗∥
2 .

6. Deduce that for any θ∗ ∈ Θ

T∑
t=1

⟨θt − θ∗, gt⟩ ≤
T∑
t=1

⟨θt − θ̃t+1, gt − ĝt⟩ −
λ

2
∥θ̃t+1 − θt∥2 +

λ

2
∥θ∗∥2 .

7. Conclude by proving a regret upper bound that depends on VT :=
∑T

t=1 ∥gt − ĝt∥2 for a well-
optimized λ to be explicitly indicated.

Part 2. Stochastic bandits

8. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has
linear expected regret. Prove that linear lower bound on the expected regret.

9. In fixed confidence best arm identification (BAI), an algorithm is δ-correct if it returns the best
arm with probability at least 1− δ.

(a) If an algorithm is δ-correct on all bandits with Gaussian rewards, it satisfies a lower bound
on its expected stopping time E[τδ]. How does that lower bound depend on δ, for small δ?

(b) Give an example of a δ-correct algorithm for BAI with Gaussian rewards with variance 1.
Note that we are not asking for an algorithm with small sample complexity: any δ-correct
algorithm suffices.

Problem: ε-greedy algorithm for stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with K ∈ N arms
with K > 1, where each arm k ∈ {1, . . . ,K} is described by a distribution νk supported on [0, 1]
with mean µk. We suppose that µ1 > µk for all k ∈ {2, . . . ,K}. We call ∆k = µ1 − µk the gap of
arm k. When the algorithm pulls arm kt at time t, it observes a reward Xt,kt sampled from νkt .

For i ∈ N with i ≥ 1, we write [i] = {1, . . . , i}. For two propositions p1 and p2, the expression
p1 ∧ p2 means p1 and p2.

The ε-greedy algorithm depends on a sequence of parameters ε1, ε2, . . . in [0, 1]. First, the algorithm
pulls each arm once. Then at time t > K, let Nk

t−1 =
∑t−1

s=1 1{ks=k} be the number of times arm k

was chosen up to time t − 1 and let µ̂k
t−1 = 1

Nk
t−1

∑t−1
s=1Xs,ks1{ks=k} . With probability 1 − εt, the

ε-greedy algorithm pulls the arm kt = argmaxk µ̂
k
t−1; with probability εt, it pulls an arm uniformly

at random. Let Zt be the Bernoulli random variable with expectation εt with value 1 if the arm is
chosen uniformly and 0 otherwise.

Let the regret of the algorithm at time T be RT = Tµ1 −
∑T

t=1 µkt .
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10. Prove that E[RT ] =
∑K

k=2∆kE[Nk
T ] .

11. What is the expectation mT of
∑T

t=1 Zt ? Give an upper bound on P
{∑T

t=1 Zt −mT ≥ Tx
}

that is exponentially decreasing in T .

In the next questions, we suppose that εt = ε ∈ [0, 1] for all t ∈ N.

We introduce the notation Nk
Z,t =

∑t
s=1 1{Zs=1 ∧ ks=k}, which corresponds to the number of pulls

of arm k due to the uniform exploration. Let ET be the event that for all k ∈ [K] and t ∈ [T ],∣∣∣Nk
Z,t − t ε

K

∣∣∣ ≤ √
t
2 log(2KT 2).

12. Prove that

E[RT ] ≤ TP(Ec
T )max

k
∆k +

K∑
k=1

∆k

T∑
t=1

P{ET ∧ Zt = 0 ∧ kt = k}+
K∑
k=1

∆kE[Nk
Z,T1{ET }] . (1)

13. (a) For t ≥ 1, k ∈ [K], what is the law of the random variable with value 1 if both Zt = 1 and
kt = k, and value 0 otherwise?

(b) Let δ ∈ (0, 1), t ∈ [T ] and k ∈ [K]. By showing two concentration inequalities and doing
an union bound, prove that with probability 1− δ,∣∣∣Nk

Z,t − t
ε

K

∣∣∣ ≤ √
t

2
log

2

δ
. (2)

Deduce that with probability 1− 1
T , for all k ∈ [K] and t ∈ [T ],

∣∣∣Nk
Z,t − t ε

K

∣∣∣ ≤ √
t
2 log(2KT 2).

That is, P(ET ) ≥ 1− 1
T .

14. (a) Suppose that T ≥ 2K2

ε2
log(2KT 2). For t ∈ [T ] such that t ≥ 2K2

ε2
log(2KT 2) and k ̸= 1,

show an upper bound on P{ET ∧ µ̂k
t > µ̂1

t } of the form C1t exp(−tC2) where C1 and C2

may depend on the parameters of the problem but not on t.

(b) Deduce an upper bound on
∑T

t=1 P{ET ∧ Zt = 0 ∧ kt = k} for k ̸= 1. Your bound can be
expressed as a function of the quantity Cexp(a) :=

∑∞
t=1 te

−ta.

(c) Prove that lim supT→∞
E[RT ]

T ≤ ε
K

∑K
k=2∆k.

15. Prove that limT→∞
E[RT ]

T = ε
K

∑K
k=2∆k.

Page 3


