SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

The exam is divided into **two separate parts**, each of which should be submitted on a **separate sheet**.

Part 1. Online Convex Optimization

- 1. Let $\Theta \subset \mathbb{R}^d$ be a convex compact set and $(\ell_t : \Theta \to \mathbb{R})_{1 \le t \le T}$ be a sequence of convex functions.
 - (a) Provide the pseudocode of Online Gradient Descent (OGD).
 - (b) Prove that OGD with step size η_t is equivalent to the update:

$$\theta_{t+1} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \langle \nabla \ell_t(\theta_t), \theta \rangle + \lambda_t \| \theta - \theta_t \|^2 \right\}$$

for some regularization parameter λ_t . Give the expression of λ_t as a function of η_t .

- (c) What is the connexion between OGD and Online Mirror Descent (OMD)? (Justify briefly)
- 2. Assume that ℓ_t are i.i.d.. Let $L = \mathbb{E}[\ell_t(\cdot)]$, which we assume μ -strongly convex, and $\theta_* \in \arg\min_{\theta\in\Theta} L(\theta)$. Let $R_T(\theta_*) := \sum_{t=1}^T \ell_t(\theta_t) \ell_t(\theta_*)$ be the regret of some online algorithm.
 - (a) Design a point $\bar{\theta}_T$ that controls its excess risk $\mathbb{E}[L(\bar{\theta}_T) L(\theta_*)]$ as a function of $\mathbb{E}[R_T(\theta_*)]$.
 - (b) Prove an upper bound on $\mathbb{E}[\|\bar{\theta}_T \theta_*\|^2]$.

Problem: Optimistic Follow The Regularized Leader

Let $\Theta \subseteq \mathbb{R}^d$ such that $\theta_1 := 0 \in \Theta$. We assume that at each $t \geq 1$, the learner tries to guess the next gradient with some $\hat{g}_{t+1} \in \mathbb{R}^d$ and updates

$$\theta_{t+1} \in \operatorname*{arg\,min}_{\theta \in \Theta} \Phi_t(\theta), \quad \text{with} \quad \Phi_t(\theta) := \left\langle \theta, \sum_{s=1}^t g_s + \widehat{g}_{t+1} \right\rangle + \frac{\lambda}{2} \|\theta\|^2$$

where $g_s = \nabla \ell_s(\theta_s)$ and $\lambda > 0$ is a regularization parameter. We assume $\hat{g}_1 = 0$ and $\Phi_0(\theta) = \frac{\lambda}{2} \|\theta\|^2$.

- 3. Show that for all $t \ge 1$ and $\theta_* \in \Theta$, $\Phi_{t-1}(\theta_t) \Phi_{t-1}(\theta_*) \le -\frac{\lambda}{2} \|\theta_t \theta_*\|^2$.
- 4. Define $\tilde{\theta}_{t+1} \in \arg\min_{\theta \in \Theta} \left\{ \langle \theta, \sum_{s=1}^{t} g_s \rangle + \frac{\lambda}{2} \|\theta\|^2 \right\}$. Show that for all $t \ge 1$ and $\theta_* \in \Theta$

$$\Phi_{t-1}(\theta_t) \leq \langle \theta_*, \sum_{s=1}^t g_s \rangle + \langle \tilde{\theta}_{t+1}, \hat{g}_t - g_t \rangle - \frac{\lambda}{2} \| \tilde{\theta}_{t+1} - \theta_t \|^2 + \frac{\lambda}{2} \| \theta_* \|^2$$

5. Deduce by induction on t that for all $t \ge 1$ and $\theta_* \in \Theta$:

$$\sum_{s=1}^{t} \langle \theta_s - \tilde{\theta}_{s+1}, \hat{g}_s \rangle + \langle \tilde{\theta}_{s+1}, g_s \rangle \leq \langle \theta_*, \sum_{s=1}^{t} g_t \rangle - \frac{\lambda}{2} \sum_{s=1}^{t} \|\theta_t - \tilde{\theta}_{t+1}\|^2 + \frac{\lambda}{2} \|\theta_*\|^2.$$

6. Deduce that for any $\theta_* \in \Theta$

$$\sum_{t=1}^{T} \langle \theta_t - \theta_*, g_t \rangle \leq \sum_{t=1}^{T} \langle \theta_t - \tilde{\theta}_{t+1}, g_t - \hat{g}_t \rangle - \frac{\lambda}{2} \|\tilde{\theta}_{t+1} - \theta_t\|^2 + \frac{\lambda}{2} \|\theta_*\|^2.$$

7. Conclude by proving a regret upper bound that depends on $V_T := \sum_{t=1}^T ||g_t - \hat{g}_t||^2$ for a well-optimized λ to be explicitly indicated.

Part 2. Stochastic bandits

- 8. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has linear expected regret. Prove that linear lower bound on the expected regret.
- 9. In fixed confidence best arm identification (BAI), an algorithm is δ -correct if it returns the best arm with probability at least 1δ .
 - (a) If an algorithm is δ -correct on all bandits with Gaussian rewards, it satisfies a lower bound on its expected stopping time $\mathbb{E}[\tau_{\delta}]$. How does that lower bound depend on δ , for small δ ?
 - (b) Give an example of a δ -correct algorithm for BAI with Gaussian rewards with variance 1. Note that we are not asking for an algorithm with small sample complexity: any δ -correct algorithm suffices.

Problem: ε -greedy algorithm for stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with $K \in \mathbb{N}$ arms with K > 1, where each arm $k \in \{1, \ldots, K\}$ is described by a distribution ν_k supported on [0, 1]with mean μ_k . We suppose that $\mu_1 > \mu_k$ for all $k \in \{2, \ldots, K\}$. We call $\Delta_k = \mu_1 - \mu_k$ the gap of arm k. When the algorithm pulls arm k_t at time t, it observes a reward X_{t,k_t} sampled from ν_{k_t} .

For $i \in \mathbb{N}$ with $i \geq 1$, we write $[i] = \{1, \ldots, i\}$. For two propositions p_1 and p_2 , the expression $p_1 \wedge p_2$ means p_1 and p_2 .

The ε -greedy algorithm depends on a sequence of parameters $\varepsilon_1, \varepsilon_2, \ldots$ in [0, 1]. First, the algorithm pulls each arm once. Then at time t > K, let $N_{t-1}^k = \sum_{s=1}^{t-1} \mathbb{1}_{\{k_s=k\}}$ be the number of times arm kwas chosen up to time t-1 and let $\hat{\mu}_{t-1}^k = \frac{1}{N_{t-1}^k} \sum_{s=1}^{t-1} X_{s,k_s} \mathbb{1}_{\{k_s=k\}}$. With probability $1 - \varepsilon_t$, the ε -greedy algorithm pulls the arm $k_t = \arg \max_k \hat{\mu}_{t-1}^k$; with probability ε_t , it pulls an arm uniformly at random. Let Z_t be the Bernoulli random variable with expectation ε_t with value 1 if the arm is chosen uniformly and 0 otherwise.

Let the regret of the algorithm at time T be $R_T = T\mu_1 - \sum_{t=1}^T \mu_{k_t}$.

- 10. Prove that $\mathbb{E}[R_T] = \sum_{k=2}^{K} \Delta_k \mathbb{E}[N_T^k]$.
- 11. What is the expectation m_T of $\sum_{t=1}^T Z_t$? Give an upper bound on $\mathbb{P}\left\{\sum_{t=1}^T Z_t m_T \ge Tx\right\}$ that is exponentially decreasing in T.

In the next questions, we suppose that $\varepsilon_t = \varepsilon \in [0, 1]$ for all $t \in \mathbb{N}$.

We introduce the notation $N_{Z,t}^k = \sum_{s=1}^t \mathbb{1}_{\{Z_s=1 \land k_s=k\}}$, which corresponds to the number of pulls of arm k due to the uniform exploration. Let \mathcal{E}_T be the event that for all $k \in [K]$ and $t \in [T]$, $\left|N_{Z,t}^k - t\frac{\varepsilon}{K}\right| \leq \sqrt{\frac{t}{2}\log(2KT^2)}.$

12. Prove that

$$\mathbb{E}[R_T] \le T\mathbb{P}(\mathcal{E}_T^c) \max_k \Delta_k + \sum_{k=1}^K \Delta_k \sum_{t=1}^T \mathbb{P}\{\mathcal{E}_T \land Z_t = 0 \land k_t = k\} + \sum_{k=1}^K \Delta_k \mathbb{E}[N_{Z,T}^k \mathbb{1}_{\{\mathcal{E}_T\}}].$$
(1)

- 13. (a) For $t \ge 1$, $k \in [K]$, what is the law of the random variable with value 1 if both $Z_t = 1$ and $k_t = k$, and value 0 otherwise?
 - (b) Let $\delta \in (0, 1)$, $t \in [T]$ and $k \in [K]$. By showing two concentration inequalities and doing an union bound, prove that with probability 1δ ,

$$\left| N_{Z,t}^{k} - t \frac{\varepsilon}{K} \right| \le \sqrt{\frac{t}{2} \log \frac{2}{\delta}} \,. \tag{2}$$

Deduce that with probability $1-\frac{1}{T}$, for all $k \in [K]$ and $t \in [T]$, $\left| N_{Z,t}^k - t\frac{\varepsilon}{K} \right| \leq \sqrt{\frac{t}{2} \log(2KT^2)}$. That is, $\mathbb{P}(\mathcal{E}_T) \geq 1 - \frac{1}{T}$.

- 14. (a) Suppose that $T \geq \frac{2K^2}{\varepsilon^2} \log(2KT^2)$. For $t \in [T]$ such that $t \geq \frac{2K^2}{\varepsilon^2} \log(2KT^2)$ and $k \neq 1$, show an upper bound on $\mathbb{P}\{\mathcal{E}_T \land \widehat{\mu}_t^k > \widehat{\mu}_t^1\}$ of the form $C_1 t \exp(-tC_2)$ where C_1 and C_2 may depend on the parameters of the problem but not on t.
 - (b) Deduce an upper bound on $\sum_{t=1}^{T} \mathbb{P}\{\mathcal{E}_T \land Z_t = 0 \land k_t = k\}$ for $k \neq 1$. Your bound can be expressed as a function of the quantity $C_{\exp}(a) := \sum_{t=1}^{\infty} te^{-ta}$.
 - (c) Prove that $\limsup_{T\to\infty} \frac{\mathbb{E}[R_T]}{T} \leq \frac{\varepsilon}{K} \sum_{k=2}^K \Delta_k$.
- 15. Prove that $\lim_{T\to\infty} \frac{\mathbb{E}[R_T]}{T} = \frac{\varepsilon}{K} \sum_{k=2}^K \Delta_k$.