SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and 3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

- 1. Let $g_1, \ldots, g_T \in [0, 1]^d$ and $\Theta = \{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq 1\}$ and let $\ell_t(\theta) = \langle \theta, g_t \rangle$. Let $\theta_1, \ldots, \theta_T \in \Theta$ be the predictions of an algorithm that aims at minimizing the regret $R_T := \sum_{t=1}^T \ell_t(\theta_t) \min_{\theta \in \Theta} \sum_{t=1}^T \ell_t(\theta)$.
 - (a) Show that there exists a sequence (g_t) such that $\theta_t \in \arg\min_{\theta \in \Theta} \sum_{s=1}^{t-1} \langle \theta, g_s \rangle$ incurs linear regret $R_T \ge (1 1/d)T$.
 - (b) Let Δ_{2d} be the simplex of dimension 2d. Define a linear surjection $A : \Delta_{2d} \to \Theta$ such that for any $\theta \in \Theta$ and $g_t \in [0,1]^d$ there exists $p \in \Delta_{2d}$ and $h_t \in [0,1]^{2d}$ (to be specified) with $\theta = Ap$ and $\ell_t(\theta) = \langle p, h_t \rangle$.
 - (c) Give the pseudo code of the exponentially weighted average algorithm to minimize the regret with respect to $p \in \Delta_{2d}$.
 - (d) Give the order in d and T of the associated regret upper-bound on R_T and tell what would be the difference for online gradient descent.
- 2. What is the difference between a distribution-dependent and a distribution-free regret bound? What are the two corresponding bounds achieved by the Upper-Confidence-Bound algorithm?
- 3. (UCB) Consider a stochastic bandit with K arms, distributions with support in [0,1] and means μ_1, \ldots, μ_k . The UCB algorithm pulls arm $a_t = \arg \max \widehat{\mu}_k(t) + \sqrt{\frac{2\log t}{N_k(t)}}$, where $N_k(t) = \sum_{s=1}^{t-1} \mathbb{I}\{a_s = k\}$ is the number of pulls of arm k before t and $\widehat{\mu}_k(t)$ is an estimation of the mean of arm k. Suppose that for all $t \in \{1, \ldots, T\}$, for all $k \in [K]$, $|\mu_k - \widehat{\mu}_k(t)| \le \sqrt{\frac{2\log t}{N_k(t)}}$.
 - (a) Show that

$$N_k(a_t) \le \frac{8\log t}{\Delta_k^2}$$
.

(b) Prove an upper bound on the regret $R_T = T \max_{k \in [K]} \mu_k - \sum_{t=1}^T \mu_{a_t}$.

Part 2. Simple Regret minimization

We consider the stochastic bandit setting: an algorithm sequentially interacts with K arms (K > 1), where each arm $k \in \{1, ..., K\}$ is described by a distribution ν_k supported on [0, 1] with mean μ_k . In opposition to the classical objective of regret minimization, we here consider the pure exploration problem of simple regret minimization: at the end of the game, the algorithm returns a final decision $a_{T+1} \in \{1, ..., K\}$ that can be randomized and aims at minimizing:

$$R_T^{\text{simple}} = \max_k \mu_k - \mu_{a_{T+1}}.$$

In this part, we study the Uniform Exploration Algorithm (UE) described by Algorithm (1) below.

While $t \leq T$ do For k = 1 to K do – Pull arm kEnd for End While Return $a_{T+1} \in \arg \max_k \widehat{\mu}_k(T)$.

Algorithm 1: Uniform Exploration

- 4. In this question, we will bound the expected regret $\mathbb{E}[R_T^{\text{simple}}]$ of UE.
 - (a) Note in the following $\Delta_k = \max_j \mu_j \mu_k$. Prove that for any arm $k \in [K]$,

$$\mathbb{P}[a_{T+1} = k] \le \exp\left(-4\left\lfloor\frac{T}{K}\right\rfloor\Delta_k^2\right).$$

(b) For $T \ge K$, show that for any $\tilde{\Delta} \ge \sqrt{\frac{2}{\lfloor \frac{T}{K} \rfloor}}$, the expected simple regret of UE can be bounded as

$$\mathbb{E}[R_T^{\text{simple}}] \le \tilde{\Delta} + K\tilde{\Delta}\exp\left(-2\left\lfloor\frac{T}{K}\right\rfloor\tilde{\Delta}^2\right).$$

(c) Taking a well chosen value of $\tilde{\Delta}$ with the above bound, show that we can bound the expected simple regret of UE as follows for $T \geq K$:

$$\mathbb{E}[R_T^{\text{simple}}] \le c \sqrt{\frac{K \ln(K)}{T}},$$

where c is a universal constant to specify.

5. In this question, we will prove lower bounds on the regret of any algorithm. For this question, we consider Gaussian distributions. Let $\Delta > 0$, we consider in the following K + 1 bandit instances $(\nu^j)_{0 \le j \le K}$, where

$$\nu_k^j = \mathcal{N}(0, 1) \quad \text{for any } k \in [K] \text{ such that } j \neq k$$
$$\nu_k^k = \mathcal{N}(\Delta, 1) \quad \text{for any } k \in [K].$$

We write $\mathbb{E}_{\nu^i}[\cdot]$ (respectively $\mathbb{P}_{\nu^i}[\cdot]$) for the expectation (respectively probability) when the algorithm plays on problem ν^i .

(a) Justify that for any algorithm there exists $i \in [K]$ such that both hold:

$$\mathbb{E}_{\nu^0}[N_i(T)] \le \frac{T}{K-1} \qquad \text{and} \qquad \mathbb{P}_i[a_{T+1}=i] \le \frac{1}{2},\tag{1}$$

and that $\mathbb{E}_{\nu^i}[R_T^{\text{simple}}] = (1 - \mathbb{P}_{\nu^i}[a_{T+1} = i])\Delta.$

- (b) Recall the fundamental inequality, which relates the expectations $\mathbb{E}_{\nu^0}[Z]$ and $\mathbb{E}_{\nu^i}[Z]$ with $\mathbb{E}_{\nu^0}[N_k(T)]$ and $\mathrm{KL}(\nu_k^0, \nu_k^i)$ (Kullback-Leibler divergence between the Gaussian distributions of arm k under the two bandit problems) for all $k \in [K]$, where Z is some random variable satisfying conditions to specify.
- (c) Admit that for Gaussian distributions $\nu = \mathcal{N}(\mu, 1)$ and $\nu' = \mathcal{N}(\mu', 1)$, the Kullback-Leibler divergence is given by $\mathrm{KL}(\nu, \nu') = \frac{(\mu \mu')^2}{2}$. Also admit that for two Bernoulli distributions of parameter p, q, $\mathrm{KL}(\mathrm{Ber}(p), \mathrm{Ber}(q)) \geq 2(p-q)^2$.

Then show, using the fundamental inequality, that for any algorithm, with i satisfying Equation (1):

$$\mathbb{E}_{\nu^{i}}[R_{T}^{\text{simple}}] \geq \frac{\Delta}{2} - \sqrt{\frac{T}{K-1}}\frac{\Delta^{2}}{2}.$$

(d) Prove that there exists a universal constant C such that for any algorithm, there exists a Gaussian bandit problem ν with mean rewards in [0, 1] such that

$$\mathbb{E}_{\nu}[R_T^{\text{simple}}] \ge C\sqrt{\frac{K-1}{T}}.$$
(2)

A lower bound similar to Equation (2) can be shown when the distributions have bounded support in [0, 1]. We will now show that this lower bound can be reached by some algorithm.

- 6. Denote $R_T(\pi)$ the cumulative pseudo-regret of a bandit algorithm π : $R_T(\pi) = T \max_k \mu_k \sum_{t=1}^T \mu_{a_t}$, where the decisions a_t depend on the algorithm π . Similarly, we now denote the simple regret of an algorithm $\tilde{\pi}$ as $R_T^{\text{simple}}(\tilde{\pi})$ in the following to avoid any confusion.
 - (a) Show that for any multi-armed bandits algorithm π with cumulative pseudo-regret $R_T(\pi)$, we can extend it to a simple regret minimisation algorithm $\tilde{\pi}$ such that

$$\mathbb{E}[R_T^{\text{simple}}(\tilde{\pi})] = \frac{\mathbb{E}[R_T(\pi)]}{T}.$$

(b) Admit we have a multi-armed bandits algorithm π (e.g., MOSS) and a constant c > 0 such that for any bandit instance $(\nu_k)_{k \in [K]}$ with ν_k supported on [0, 1]: $\mathbb{E}[R_T(\pi)] \leq c\sqrt{KT}$. Then show that some algorithm $\tilde{\pi}$ has a simple regret for any bandit instance $(\nu_k)_{k \in [K]}$ with ν_k supported on [0, 1] bounded as

$$\mathbb{E}[R_T^{\text{simple}}(\tilde{\pi})] \le c\sqrt{\frac{K}{T}}.$$

Part 3. Online Mirror Descent

Let $\Theta \subseteq \mathbb{R}^d$ be a compact convex decision space. We consider the following setting. At each $t \ge 1$, the learner chooses $\theta_t \in \Theta$, the environment chooses a vector $g_t \in \mathbb{R}^d$ and reveals it to the learner. The goal of the learner is to minimize his linear regret

$$\operatorname{Regret}_{T}(\theta) = \sum_{t=1}^{T} \langle g_{t}, \theta_{t} - \theta \rangle \quad \text{for all } \theta \in \Theta \,.$$

Let $R: \Theta \to \mathbb{R}$ be a sub-differentiable mirror-map, which is μ -strongly convex with respect to some norm $\|\cdot\|$. We consider the Online Mirror Descent algorithm defined by:

$$\theta_{t+1} = \operatorname*{arg\,min}_{\theta \in \Theta} \left\{ \langle g_t, \theta \rangle + \frac{1}{\eta} D_R(\theta, \theta_t) \right\}$$

where $\eta > 0$ and $D_R(x, y) = R(x) - R(y) - \langle \nabla R(y), x - y \rangle$ is the Bregman divergence associated with R.

- 7. How would you adapt the above algorithm if the losses $\ell_t : \Theta \to \mathbb{R}$ are convex instead of linear?
- 8. Explain how the above algorithm generalizes (without proving it in details):
 - (a) the Online Gradient Descent algorithm;
 - (b) the Exponentially Weighted Average algorithm when $\Theta = \Delta_d$.
- 9. Show that for any $\theta \in \Theta$: $\langle g_t, \theta_{t+1} \theta \rangle \leq \frac{1}{\eta} \langle \nabla R(\theta_{t+1}) \nabla R(\theta_t), \theta \theta_{t+1} \rangle$.
- 10. Deduce that $\langle g_t, \theta_{t+1} \theta \rangle \leq \frac{1}{\eta} \left(D_R(\theta, \theta_t) D_R(\theta, \theta_{t+1}) \frac{\mu}{2} \| \theta_t \theta_{t+1} \|^2 \right).$
- 11. Show that $\langle g_t, \theta_{t+1} \theta_t \rangle \leq \frac{\mu}{2\eta} \|\theta_t \theta_{t+1}\|^2 + \frac{\eta}{2\mu} \|g_t\|_*^2$, where $\|\cdot\|_*$ is the dual norm of $\|\cdot\|$.
- 12. Conclude by providind an upper-bound on the regret assuming that $||g_t||_* \leq G$ for all t. Optimize over η .