
MVA 2023-24 P. Gaillard and E. Boursier

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.
This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and
3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

1. Let g1, . . . , gT ∈ [0, 1]d and Θ = {θ ∈ Rd : ∥θ∥1 ≤ 1} and let ℓt(θ) = ⟨θ, gt⟩. Let θ1, . . . , θT ∈ Θ
be the predictions of an algorithm that aims at minimizing the regret RT :=

∑T
t=1 ℓt(θt) −

minθ∈Θ
∑T

t=1 ℓt(θ).

(a) Show that there exists a sequence (gt) such that θt ∈ argminθ∈Θ
∑t−1

s=1⟨θ, gs⟩ incurs linear
regret RT ≥ (1− 1/d)T .

(b) Let ∆2d be the simplex of dimension 2d. Define a linear surjection A : ∆2d → Θ such that
for any θ ∈ Θ and gt ∈ [0, 1]d there exists p ∈ ∆2d and ht ∈ [0, 1]2d (to be specified) with
θ = Ap and ℓt(θ) = ⟨p, ht⟩.

(c) Give the pseudo code of the exponentially weighted average algorithm to minimize the
regret with respect to p ∈ ∆2d.

(d) Give the order in d and T of the associated regret upper-bound on RT and tell what would
be the difference for online gradient descent.

2. What is the difference between a distribution-dependent and a distribution-free regret bound?
What are the two corresponding bounds achieved by the Upper-Confidence-Bound algorithm?

3. (UCB) Consider a stochastic bandit with K arms, distributions with support in [0, 1] and
means µ1, . . . , µk. The UCB algorithm pulls arm at = argmax µ̂k(t) +

√
2 log t
Nk(t)

, where Nk(t) =∑t−1
s=1 I{as = k} is the number of pulls of arm k before t and µ̂k(t) is an estimation of the mean

of arm k. Suppose that for all t ∈ {1, . . . , T}, for all k ∈ [K], |µk − µ̂k(t)| ≤
√

2 log t
Nk(t)

.

(a) Show that

Nk(at) ≤
8 log t

∆2
k

.

(b) Prove an upper bound on the regret RT = T maxk∈[K] µk −
∑T

t=1 µat .
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Part 2. Simple Regret minimization

We consider the stochastic bandit setting: an algorithm sequentially interacts with K arms (K > 1),
where each arm k ∈ {1, . . . ,K} is described by a distribution νk supported on [0, 1] with mean µk.

In opposition to the classical objective of regret minimization, we here consider the pure exploration
problem of simple regret minimization: at the end of the game, the algorithm returns a final decision
aT+1 ∈ {1, . . . ,K} that can be randomized and aims at minimizing:

Rsimple
T = max

k
µk − µaT+1 .

In this part, we study the Uniform Exploration Algorithm (UE) described by Algorithm (1) below.

While t ≤ T do
For k = 1 to K do
– Pull arm k

End for
End While
Return aT+1 ∈ argmaxk µ̂k(T ).

Algorithm 1: Uniform Exploration

4. In this question, we will bound the expected regret E[Rsimple
T ] of UE.

(a) Note in the following ∆k = maxj µj − µk. Prove that for any arm k ∈ [K],

P[aT+1 = k] ≤ exp

(
−4

⌊
T

K

⌋
∆2

k

)
.

(b) For T ≥ K, show that for any ∆̃ ≥
√

2
⌊ T
K
⌋ , the expected simple regret of UE can be

bounded as
E[Rsimple

T ] ≤ ∆̃ +K∆̃ exp

(
−2

⌊
T

K

⌋
∆̃2

)
.

(c) Taking a well chosen value of ∆̃ with the above bound, show that we can bound the
expected simple regret of UE as follows for T ≥ K:

E[Rsimple
T ] ≤ c

√
K ln(K)

T
,

where c is a universal constant to specify.

5. In this question, we will prove lower bounds on the regret of any algorithm. For this question,
we consider Gaussian distributions. Let ∆ > 0, we consider in the following K + 1 bandit
instances (νj)0≤j≤K , where

νjk = N (0, 1) for any k ∈ [K] such that j ̸= k

νkk = N (∆, 1) for any k ∈ [K].
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We write Eνi [·] (respectively Pνi [·]) for the expectation (respectively probability) when the
algorithm plays on problem νi.

(a) Justify that for any algorithm there exists i ∈ [K] such that both hold:

Eν0 [Ni(T )] ≤
T

K − 1
and Pi[aT+1 = i] ≤ 1

2
, (1)

and that Eνi [R
simple
T ] = (1− Pνi [aT+1 = i])∆.

(b) Recall the fundamental inequality, which relates the expectations Eν0 [Z] and Eνi [Z] with
Eν0 [Nk(T )] and KL(ν0k , ν

i
k) (Kullback-Leibler divergence between the Gaussian distribu-

tions of arm k under the two bandit problems) for all k ∈ [K], where Z is some random
variable satisfying conditions to specify.

(c) Admit that for Gaussian distributions ν = N (µ, 1) and ν ′ = N (µ′, 1), the Kullback-Leibler
divergence is given by KL(ν, ν ′) = (µ−µ′)2

2 . Also admit that for two Bernoulli distributions
of parameter p, q, KL(Ber(p),Ber(q)) ≥ 2(p− q)2.
Then show, using the fundamental inequality, that for any algorithm, with i satisfying
Equation (1):

Eνi [R
simple
T ] ≥ ∆

2
−
√

T

K − 1

∆2

2
.

(d) Prove that there exists a universal constant C such that for any algorithm, there exists a
Gaussian bandit problem ν with mean rewards in [0, 1] such that

Eν [R
simple
T ] ≥ C

√
K − 1

T
. (2)

A lower bound similar to Equation (2) can be shown when the distributions have bounded support
in [0, 1]. We will now show that this lower bound can be reached by some algorithm.

6. Denote RT (π) the cumulative pseudo-regret of a bandit algorithm π: RT (π) = T maxk µk −
∑T

t=1 µat ,
where the decisions at depend on the algorithm π. Similarly, we now denote the simple regret
of an algorithm π̃ as Rsimple

T (π̃) in the following to avoid any confusion.

(a) Show that for any multi-armed bandits algorithm π with cumulative pseudo-regret RT (π),
we can extend it to a simple regret minimisation algorithm π̃ such that

E[Rsimple
T (π̃)] =

E[RT (π)]

T
.

(b) Admit we have a multi-armed bandits algorithm π (e.g., MOSS) and a constant c > 0 such
that for any bandit instance (νk)k∈[K] with νk supported on [0, 1]: E[RT (π)] ≤ c

√
KT .

Then show that some algorithm π̃ has a simple regret for any bandit instance (νk)k∈[K]

with νk supported on [0, 1] bounded as

E[Rsimple
T (π̃)] ≤ c

√
K

T
.
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Part 3. Online Mirror Descent

Let Θ ⊆ Rd be a compact convex decision space. We consider the following setting. At each t ≥ 1,
the learner chooses θt ∈ Θ, the environment chooses a vector gt ∈ Rd and reveals it to the learner.
The goal of the learner is to minimize his linear regret

RegretT (θ) =
T∑
t=1

⟨gt, θt − θ⟩ for all θ ∈ Θ .

Let R : Θ → R be a sub-differentiable mirror-map, which is µ-strongly convex with respect to some
norm ∥ · ∥. We consider the Online Mirror Descent algorithm defined by:

θt+1 = argmin
θ∈Θ

{
⟨gt, θ⟩+

1

η
DR(θ, θt)

}
where η > 0 and DR(x, y) = R(x) − R(y) − ⟨∇R(y), x − y⟩ is the Bregman divergence associated
with R.

7. How would you adapt the above algorithm if the losses ℓt : Θ → R are convex instead of linear?

8. Explain how the above algorithm generalizes (without proving it in details):

(a) the Online Gradient Descent algorithm;

(b) the Exponentially Weighted Average algorithm when Θ = ∆d.

9. Show that for any θ ∈ Θ: ⟨gt, θt+1 − θ⟩ ≤ 1
η ⟨∇R(θt+1)−∇R(θt), θ − θt+1⟩ .

10. Deduce that ⟨gt, θt+1 − θ⟩ ≤ 1
η

(
DR(θ, θt)−DR(θ, θt+1)− µ

2∥θt − θt+1∥2
)
.

11. Show that ⟨gt, θt+1 − θt⟩ ≤ µ
2η∥θt − θt+1∥2 + η

2µ∥gt∥
2
∗ , where ∥ · ∥∗ is the dual norm of ∥ · ∥.

12. Conclude by providind an upper-bound on the regret assuming that ∥gt∥∗ ≤ G for all t. Optimize
over η.
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