MVA 2023-24 P. Gaillard and E. Boursier

SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.

This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and
3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

1. Let g1,...,97 €[0,1] and © = {§ € R%: ||§||; < 1} and let £,(0) = (0, g;). Let 61,...,07 € ©
be the prejc}ictions of an algorithm that aims at minimizing the regret Ry := Zthl 0(0;) —
mingee Zt:l ().

(a) Show that there exists a sequence (g) such that f; € argmingeg > '_! (6, g5) incurs linear
regret Ry > (1 —1/d)T.

(b) Let Agg be the simplex of dimension 2d. Define a linear surjection A : Agg — O such that
for any 6 € © and g; € [0, 1]¢ there exists p € Aogg and hy € [0, 1]?? (to be specified) with
0 = Ap and £,(0) = (p, hy).

(c¢) Give the pseudo code of the exponentially weighted average algorithm to minimize the
regret with respect to p € Agg.

(d) Give the order in d and T of the associated regret upper-bound on Ry and tell what would
be the difference for online gradient descent.

2. What is the difference between a distribution-dependent and a distribution-free regret bound?
What are the two corresponding bounds achieved by the Upper-Confidence-Bound algorithm?

3. (UCB) Consider a stochastic bandit with K arms, distributions with support in [0, 1] and
means fi1,. .., g The UCB algorithm pulls arm a; = arg max fig(t) +  / ?\,1;8;, where N(t) =
S {ag = k} is the number of pulls of arm k before ¢ and Jiy(t) is an estimation of the mean

of arm k. Suppose that for all t € {1,...,T}, for all k € [K], |ur — px(t)] < ,/?\}Ija;.
(a) Show that

(b) Prove an upper bound on the regret Ry = T maxye(x] pr — Zthl Hay -
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Part 2. Simple Regret minimization

We consider the stochastic bandit setting: an algorithm sequentially interacts with K arms (K > 1),
where each arm k € {1,..., K} is described by a distribution v, supported on [0, 1] with mean .

In opposition to the classical objective of regret minimization, we here consider the pure exploration
problem of simple regret minimization: at the end of the game, the algorithm returns a final decision

ars1 € {1,..., K} that can be randomized and aims at minimizing:
simple
R = Max (i — flagy,-

In this part, we study the Uniform Exploration Algorithm (UE) described by Algorithm (1) below.

While ¢t < T do
For k=1 to K do

— Pull arm k&
End for

End While
Return a4 € arg maxy, i (7).

Algorithm 1: Uniform Exploration

simple

4. In this question, we will bound the expected regret E[R."""] of UE.
(a) Note in the following Ay = max; j1; — py. Prove that for any arm k € [K],

Plari, = k] < exp <—4 H;J Ai) .

(b) For T > K, show that for any A > ﬁ, the expected simple regret of UE can be
bounded as *

E[RSTimple] <A+ KAexp <—2 LZ;J AQ> .

(c) Taking a well chosen value of A with the above bound, show that we can bound the
expected simple regret of UE as follows for T' > K:

- KIn(K)
1
B[R] < o/ =,
where c is a universal constant to specify.

5. In this question, we will prove lower bounds on the regret of any algorithm. For this question,
we consider Gaussian distributions. Let A > 0, we consider in the following K + 1 bandit
instances (17)o<j<k, where

I/’Z =N(0,1) for any k € [K] such that j # k
vE =N(A,1)  for any k € [K].
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We write E,i[-] (respectively P,:[-]) for the expectation (respectively probability) when the
algorithm plays on problem 1/*.

(a) Justify that for any algorithm there exists ¢ € [K] such that both hold:

Eyo[NA(T)] < —

“K-1 ’ 1)

and Pl [(LT+1 - Z] S

DO =

and that E,:[R™] = (1 — P,ifars = i])A.

(b) Recall the fundamental inequality, which relates the expectations E, 0[Z] and E:[Z] with
E,o[Ng(T)] and KL(},vi) (Kullback-Leibler divergence between the Gaussian distribu-
tions of arm k under the two bandit problems) for all k& € [K], where Z is some random
variable satisfying conditions to specify.

(¢) Admit that for Gaussian distributions v = M (u, 1) and v/ = N'(i/, 1), the Kullback-Leibler
divergence is given by KL(v, V') = % Also admit that for two Bernoulli distributions
of parameter p, ¢, KL(Ber(p), Ber(q)) > 2(p — q).
Then show, using the fundamental inequality, that for any algorithm, with i satisfying
Equation (1):

A T A?

E. . Rsimple > =2 =

vl = 2 K—-12

(d) Prove that there exists a universal constant C' such that for any algorithm, there exists a
Gaussian bandit problem v with mean rewards in [0, 1] such that

simple K-1
E,[R™P°] > ¢ — (2)

A lower bound similar to Equation (2) can be shown when the distributions have bounded support
in [0,1]. We will now show that this lower bound can be reached by some algorithm.

6. Denote Ry () the cumulative pseudo-regret of a bandit algorithm 7: Ry (w) = T maxy py, — Zthl ay s
where the decisions a; depend on the algorithm 7. Similarly, we now denote the simple regret

of an algorithm 7 as R;imple(fr) in the following to avoid any confusion.

(a) Show that for any multi-armed bandits algorithm 7 with cumulative pseudo-regret Ry (),
we can extend it to a simple regret minimisation algorithm 7 such that

E[Rr(m)]

B[Ry (7)) = =

(b) Admit we have a multi-armed bandits algorithm 7 (e.g., MOSS) and a constant ¢ > 0 such
that for any bandit instance (vy)ie(x) With vy supported on [0, 1]: E[Rp(7)] < cVKT.
Then show that some algorithm 7 has a simple regret for any bandit instance (Vk)ke[K]
with vy, supported on [0, 1] bounded as

- K
simple / ~ < 0
E[RY™"(7)] < e/ =
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Part 3. Online Mirror Descent

Let © C R? be a compact convex decision space. We consider the following setting. At each t > 1,
the learner chooses 0; € ©, the environment chooses a vector g; € R? and reveals it to the learner.
The goal of the learner is to minimize his linear regret

T
Regrety(6) = Y (gi, 6 — 6) foralld € ©.
t=1

Let R: ©® — R be a sub-differentiable mirror-map, which is p-strongly convex with respect to some
norm || - ||. We consider the Online Mirror Descent algorithm defined by:

. 1
;11 = arg min {(gt, 0) + —Dgr(0, Qt)}
0cO n

where n > 0 and Dg(z,y) = R(z) — R(y) — (VR(y),z — y) is the Bregman divergence associated
with R.

7. How would you adapt the above algorithm if the losses ¢, : © — R are convex instead of linear?

8. Explain how the above algorithm generalizes (without proving it in details):
(a) the Online Gradient Descent algorithm;
(b) the Exponentially Weighted Average algorithm when © = Ay.

9. Show that for any 0 e o: <Qt, 9t+1 — 0> < %<VR(0H_1) — VR(Qt), 0 — 0t+l> .
10. Deduce that (g;, 0141 — 0) < %(DR(G,Ht) — Dr(8,0:41) — 5116; — 0t+1‘|2) .
11. Show that (g¢, 0141 — 0¢) < 45(|6 — Ori1||* + %HgtHf, where || - ||« is the dual norm of || - ||.

12. Conclude by providind an upper-bound on the regret assuming that ||g; ||« < G for all t. Optimize
over 7).
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