SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and 3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

- 1. Let $(x_1, y_1), \ldots, (x_T, y_T)$ be a sequence of i.i.d. random variables following a distribution ν in $[-X, X]^d \times [-Y, Y]$ for some X, Y > 0 and $d \ge 1$. We consider the decision set $\Theta = \{\theta \in \mathbb{R}^d : \|\theta\|_1 \le B\}$ and the loss $\ell_t(\theta) = (\langle \theta, x_t \rangle y_t)^2$.
 - (a) Give the definition of the (adversarial) regret R_T of an algorithm that chooses $\theta_t \in \Theta$ at each round t.
 - (b) Provide the pseudo-code of an algorithm that controls the regret.
 - (c) Give the regret upper-bound associated to the above algorithm.
 - (d) What are the hyper-parameters of the algorithm? How would you calibrate them?
 - (e) Denoting by $\bar{\theta}_T = \frac{1}{T} \sum_{t=1}^T \theta_t$ the average iterate, show that

$$\mathcal{R}(\bar{\theta}_t) - \inf_{\theta \in \Theta} \mathcal{R}(\theta) \le \frac{\mathbb{E}[R_T]}{T} \quad \text{where} \quad \mathcal{R}(\theta) = \mathbb{E}\big[(\langle \theta, X \rangle - Y)^2\big], \quad (X, Y) \sim \nu$$

- (f) What property (give the definition) of ℓ_t could be used to improve the rate?
- 2. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has linear expected regret. Prove that linear lower bound on the regret.
- 3. In stochastic bandits, what are the drawbacks of the Explore-Then-Commit algorithm compared to UCB?

Part 2. Internal regret

We consider the problem of prediction with expert advice. At each round t = 1, ..., T, a learner chooses a weight vector $p_t \in \Delta_K = \{p \in \mathbb{R}^K_+ : \sum_k p(k) = 1\}$, samples $k_t \sim p_t$, observes a loss vector $\ell_t \in [0, 1]^K$ and suffers the loss $\ell_t(k_t)$. We would like to minimize the internal regret defined as:

$$R_T^{(\text{int})} = \max_{1 \le i,j \le K} \mathbb{E} \left[\sum_{t=1}^T \left(\ell_t(k_t) - \ell_t(j) \right) \mathbb{1}_{\{k_t=i\}} \right].$$

Basically, a player has small internal regret if for all pairs of action $(i, j) \in [K]^2$, he does not regret of not having chosen action $j \in [K]$ when he selected $k_t = i$.

- 4. Denote by $R_T = \max_i \mathbb{E} \left[\sum_{t=1}^T \ell_t(k_t) \ell_t(i) \right]$ the standard regret. We show here that internal regret is a stronger notion of regret.
 - (a) Show that any algorithm with a sublinear internal regret $R_T^{(int)}$ has also a sublinear standard regret R_T .
 - (b) Provide, for K = 3, a sequence of losses $\ell_1, \ldots, \ell_T \in [0, 1]^3$ and a sequence of decisions $k_1, \ldots, k_T \in [K]$ to show that an algorithm can have $R_T^{(\text{int})} = T/3$ although $R_T = 0$.

Now, we would like to design a low internal regret algorithm. For all $1 \leq i \neq j \leq K$, denote by $p_t^{i \to j} \in \Delta_K$ the vector obtained from p_t by putting probability mass 0 on *i* and $p_t(i) + p_t(j)$ on *j*.

5. Show that

$$R_T^{(\text{int})} \leq \mathbb{E} \left[\sum_{t=1}^T \langle p_t, \ell_t \rangle - \min_{i \neq j} \sum_{t=1}^T \langle p_t^{i \to j}, \ell_t \rangle \right].$$

6. Denoting by $W_t(i,j) = \exp\left(-\eta \sum_{s=1}^t \langle p_s^{i \to j}, \ell_s \rangle\right)$ and $W_t = \sum_{i \neq j} W_t(i,j)$.

(a) Show that

$$W_t \le W_{t-1} \exp\left(\eta^2 - \eta \sum_{i \ne j} q_t(i,j) \langle p_t^{i \rightarrow j}, \ell_t \rangle\right).$$

(b) Show that

$$W_T \ge \exp\left(-\eta \min_{i \neq j} \sum_{t=1}^T \langle p_t^{i \to j}, \ell_t \rangle\right)$$

7. Deduce that

$$R_T^{(\text{int})} \le \eta T + \frac{2\log K}{\eta}$$

and optimize in η .

- 8. Assume that instead of observing $\ell_t \in [0, 1]^K$ the learner would only observe the bandit feedback $\ell_t(k_t) \in [0, 1]$.
 - (a) How would you modify the above algorithm?

Input: learning rate $\eta > 0$ Init: $q_t \in \Delta_E$ uniform distribution on $E := \{(i, j) \in [K]^2 : i \neq j\}$ For t = 1 to T do – Define $p_t \in \Delta_K$ by solving the fixed-point equation (we accept that this can be solved) $p_t = \sum_{i \neq j} q_t(i, j) p_t^{i \to j}$. – Play $k_t \sim p_t$ and observe $\ell_t \in [0, 1]^K$. – For $(i, j) \in E$ update $q_t(i, j) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \langle p_s^{i \to j}, \ell_s \rangle\right)}{\sum_{k \neq l} \exp\left(-\eta \sum_{s=1}^{t-1} \langle p_s^{k \to l}, \ell_s \rangle\right)}$.

End for

Algorithm 1: Exponentially Weighted Average Forecaster for Internal Regret

(b) What internal regret do you expect in terms of K and T (short justification)?

Part 3. Stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with $K \in \mathbb{N}$ arms with K > 1, where each arm $k \in \{1, \ldots, K\}$ is described by a distribution ν_k supported on [0, 1]with mean μ_k . We suppose that $\mu_1 \ge \mu_k$ for all $k \in \{1, \ldots, K\}$. Let $T \in \mathbb{N}$ be such that $T \ge K+1$. For $i, j \in \mathbb{N}$ with $i \ge 1$ and $i \le j$, we write $[i] = \{1, \ldots, i\}$ and $[i : j] = \{i, i+1, \ldots, j\}$.

For $i, j \in \mathbb{N}$ with $i \geq 1$ and $i \leq j$, we write $[i] = \{1, \dots, i\}$ and $[i, j] = \{i, i+1, \dots, j\}$.

We study a variant of the UCB algorithm, denoted by $UCB(\delta)$ and described in Algorithm 2.

```
Input: Confidence level \delta \in (0, 1)

For t = 1 to K do

– Pull arm k_t = t

– Observe X_{t,k_t} \sim \nu_{k_t}

Set N_{K,k} = 1 and \hat{\mu}_{K,k} = X_{k,k} for all k \in [K].

For t = K + 1 to T do

– Pull arm k_t = \arg \max_{k \in [K]} \hat{\mu}_{t-1,k} + \sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t-1,k}}}

– Observe X_{t,k_t} \sim \nu_{k_t}

– Update N_{t,k_t} = N_{t-1,k_t} + 1 and \hat{\mu}_{t,k_t} = \hat{\mu}_{t-1,k_t} + \frac{1}{N_{t,k_t}} (X_{t,k_t} - \hat{\mu}_{t-1,k_t}). For k \neq k_t, set N_{t,k} = N_{t-1,k} and \hat{\mu}_{t,k} = \hat{\mu}_{t-1,k}.

End for
```

Algorithm 2: UCB(δ)

In this part, we will call regret the quantity $R_T = T\mu_1 - \sum_{t=1}^T \mu_{k_t}$. We will bound the expected regret $\mathbb{E}[R_T]$ of UCB(δ).

9. Prove that for all $k \in [K]$ and $t \in [K+1:T]$, $\hat{\mu}_{t,k} = \frac{1}{N_{t,k}} \sum_{s=1}^{t} X_{s,ks} \mathbb{I}\{k_s = k\}$. Here $\mathbb{I}\{A\}$ is the indicator of event A, with value 1 if the event happens and 0 otherwise.

10. Let E_{bad} be the event $\{\exists t \in [K+1:T], \exists k \in [K], |\hat{\mu}_{t,k} - \mu_k| > \sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}}\}$. (a) Prove that

 $\mathbb{P}(E_{\text{bad}}) \le \sum_{t=K+1}^{T} \sum_{k=1}^{K} (\mathbb{P}(\widehat{\mu}_{t,k} - \mu_k > \sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}}) + \mathbb{P}(\widehat{\mu}_{t,k} - \mu_k < -\sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}}))$

(b) Show that $\mathbb{P}(\widehat{\mu}_{t,k} - \mu_k > \sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}}) \leq \frac{\delta}{2KT}$. Hint: $N_{t,k}$ is random, but takes values in [1, t]. We admit that the same bound is true for $\mathbb{P}(\widehat{\mu}_{t,k} - \mu_k < -\sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}})$.

(c) Show that $\mathbb{P}(E_{\text{bad}}) \leq \delta$.

11. Let *E* be the complement of $E_{\text{bad}}, E = \{ \forall t \in [K+1:T], \forall k \in [K], |\hat{\mu}_{t,k} - \mu_k| \le \sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t,k}}} \}.$

(a) Write the regret as a sum over arms, using the suboptimality gaps $\Delta_k = \mu_1 - \mu_k$ for $k \in [K]$.

(b) Show that for all $t \in [K+1:T]$, if event E holds then $\mu_{k_t} + 2\sqrt{\frac{1}{2} \frac{\log(2KT^2/\delta)}{N_{t-1,k_t}}} \ge \mu_1$.

- (c) Under event E, show that $N_{T,k} \leq 1 + \frac{2\log(2KT^2/\delta)}{\Delta_k^2}$ for all $k \in [K]$ with $\Delta_k > 0$.
- (d) Use the questions above to give an upper bound on $\mathbb{E}[R_T \mathbb{I}\{E\}]$.
- 12. Give an upper bound on $\mathbb{E}[R_T]$, function of K, T, δ and the gaps $(\Delta_k)_{k \in [K]}$. Use that bound to show that for a well chosen $\delta \in (0, 1)$, $\mathbb{E}[R_T] \leq C_1 + C_2 \log T$ where C_1, C_2 can depend on parameters of the problem, but don't depend on T.
- 13. For a well chosen $\delta \in (0,1)$, prove an upper bound of the form $\mathbb{E}[R_T] \leq C'_1 + C'_2 \sqrt{T \log T}$ where C'_1, C'_2 don't depend on T and C'_2 does not depend on the gaps $(\Delta_k)_{k \in [K]}$ or the means $(\mu_k)_{k \in [K]}$.