
MVA 2022-23 P. Gaillard and R. Degenne

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.
This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and
3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

1. Let (x1, y1), . . . , (xT , yT ) be a sequence of i.i.d. random variables following a distribution ν in
[−X,X]d × [−Y, Y ] for some X,Y > 0 and d ≥ 1. We consider the decision set Θ = {θ ∈ Rd :

‖θ‖1 ≤ B} and the loss `t(θ) =
(
〈θ, xt〉 − yt

)2.
(a) Give the definition of the (adversarial) regret RT of an algorithm that chooses θt ∈ Θ at

each round t.

(b) Provide the pseudo-code of an algorithm that controls the regret.

(c) Give the regret upper-bound associated to the above algorithm.

(d) What are the hyper-parameters of the algorithm? How would you calibrate them?

(e) Denoting by θ̄T = 1
T

∑T
t=1 θt the average iterate, show that

R(θ̄t)− inf
θ∈Θ
R(θ) ≤ E[RT ]

T
where R(θ) = E

[
(〈θ,X〉 − Y )2

]
, (X,Y ) ∼ ν .

(f) What property (give the definition) of `t could be used to improve the rate?

2. Give an example of a stochastic bandit problem on which the Follow The Leader algorithm has
linear expected regret. Prove that linear lower bound on the regret.

3. In stochastic bandits, what are the drawbacks of the Explore-Then-Commit algorithm compared
to UCB?
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Part 2. Internal regret

We consider the problem of prediction with expert advice. At each round t = 1, . . . , T , a learner
chooses a weight vector pt ∈ ∆K = {p ∈ RK+ :

∑
k p(k) = 1}, samples kt ∼ pt, observes a loss vector

`t ∈ [0, 1]K and suffers the loss `t(kt). We would like to minimize the internal regret defined as:

R
(int)
T = max

1≤i,j≤K
E
[ T∑
t=1

(
`t(kt)− `t(j)

)
1{kt=i}

]
.

Basically, a player has small internal regret if for all pairs of action (i, j) ∈ [K]2, he does not regret
of not having chosen action j ∈ [K] when he selected kt = i.

4. Denote by RT = maxi E
[∑T

t=1 `t(kt)− `t(i)
]
the standard regret. We show here that internal

regret is a stronger notion of regret.

(a) Show that any algorithm with a sublinear internal regret R(int)
T has also a sublinear standard

regret RT .

(b) Provide, for K = 3, a sequence of losses `1, . . . , `T ∈ [0, 1]3 and a sequence of decisions
k1, . . . , kT ∈ [K] to show that an algorithm can have R(int)

T = T/3 although RT = 0.

Now, we would like to design a low internal regret algorithm. For all 1 ≤ i 6= j ≤ K, denote by
pi→jt ∈ ∆K the vector obtained from pt by putting probability mass 0 on i and pt(i) + pt(j) on j.

5. Show that

R
(int)
T ≤ E

[ T∑
t=1

〈pt, `t〉 −min
i 6=j

T∑
t=1

〈pi→jt , `t〉
]
.

6. Denoting by Wt(i, j) = exp
(
− η

∑t
s=1〈p

i→j
s , `s〉

)
and Wt =

∑
i 6=jWt(i, j).

(a) Show that

Wt ≤Wt−1 exp

(
η2 − η

∑
i 6=j

qt(i, j)〈pi→jt , `t〉
)
.

(b) Show that

WT ≥ exp

(
− ηmin

i 6=j

T∑
t=1

〈pi→jt , `t〉
)
.

7. Deduce that
R

(int)
T ≤ ηT +

2 logK

η
,

and optimize in η.

8. Assume that instead of observing `t ∈ [0, 1]K the learner would only observe the bandit feedback
`t(kt) ∈ [0, 1].

(a) How would you modify the above algorithm?
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Input: learning rate η > 0
Init: qt ∈ ∆E uniform distribution on E := {(i, j) ∈ [K]2 : i 6= j}
For t = 1 to T do

– Define pt ∈ ∆K by solving the fixed-point equation (we accept that this can be solved)

pt =
∑
i 6=j

qt(i, j)p
i→j
t .

– Play kt ∼ pt and observe `t ∈ [0, 1]K .
– For (i, j) ∈ E update

qt(i, j) =
exp

(
− η

∑t−1
s=1〈p

i→j
s , `s〉

)
∑

k 6=l exp
(
− η

∑t−1
s=1〈pk→ls , `s〉

) .
End for

Algorithm 1: Exponentially Weighted Average Forecaster for Internal Regret

(b) What internal regret do you expect in terms of K and T (short justification)?

Part 3. Stochastic bandits

We consider the stochastic bandit setting: an algorithm sequentially interacts with K ∈ N arms
with K > 1, where each arm k ∈ {1, . . . ,K} is described by a distribution νk supported on [0, 1]
with mean µk. We suppose that µ1 ≥ µk for all k ∈ {1, . . . ,K}. Let T ∈ N be such that T ≥ K+ 1.

For i, j ∈ N with i ≥ 1 and i ≤ j, we write [i] = {1, . . . , i} and [i : j] = {i, i+ 1, . . . , j}.
We study a variant of the UCB algorithm, denoted by UCB(δ) and described in Algorithm 2.

Input: Confidence level δ ∈ (0, 1)
For t = 1 to K do

– Pull arm kt = t
– Observe Xt,kt ∼ νkt

Set NK,k = 1 and µ̂K,k = Xk,k for all k ∈ [K].
For t = K + 1 to T do

– Pull arm kt = arg maxk∈[K] µ̂t−1,k +
√

1
2

log(2KT 2/δ)
Nt−1,k

– Observe Xt,kt ∼ νkt
– Update Nt,kt = Nt−1,kt + 1 and µ̂t,kt = µ̂t−1,kt + 1

Nt,kt
(Xt,kt − µ̂t−1,kt). For k 6= kt, set

Nt,k = Nt−1,k and µ̂t,k = µ̂t−1,k.
End for

Algorithm 2: UCB(δ)
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In this part, we will call regret the quantity RT = Tµ1 −
∑T

t=1 µkt . We will bound the expected
regret E[RT ] of UCB(δ).

9. Prove that for all k ∈ [K] and t ∈ [K + 1 : T ], µ̂t,k = 1
Nt,k

∑t
s=1Xs,ksI{ks = k}. Here I{A} is

the indicator of event A, with value 1 if the event happens and 0 otherwise.

10. Let Ebad be the event {∃t ∈ [K + 1 : T ],∃k ∈ [K], |µ̂t,k − µk| >
√

1
2

log(2KT 2/δ)
Nt,k

}.

(a) Prove that

P(Ebad) ≤
T∑

t=K+1

K∑
k=1

(P(µ̂t,k − µk >

√
1

2

log(2KT 2/δ)

Nt,k
) + P(µ̂t,k − µk < −

√
1

2

log(2KT 2/δ)

Nt,k
)) .

(b) Show that P(µ̂t,k −µk >
√

1
2

log(2KT 2/δ)
Nt,k

) ≤ δ
2KT . Hint: Nt,k is random, but takes values in

[1, t]. We admit that the same bound is true for P(µ̂t,k − µk < −
√

1
2

log(2KT 2/δ)
Nt,k

).

(c) Show that P(Ebad) ≤ δ.

11. Let E be the complement of Ebad, E = {∀t ∈ [K+1 : T ], ∀k ∈ [K], |µ̂t,k−µk| ≤
√

1
2

log(2KT 2/δ)
Nt,k

}.

(a) Write the regret as a sum over arms, using the suboptimality gaps ∆k = µ1 − µk for
k ∈ [K].

(b) Show that for all t ∈ [K + 1 : T ], if event E holds then µkt + 2
√

1
2

log(2KT 2/δ)
Nt−1,kt

≥ µ1.

(c) Under event E, show that NT,k ≤ 1 + 2 log(2KT 2/δ)
∆2

k
for all k ∈ [K] with ∆k > 0.

(d) Use the questions above to give an upper bound on E[RT I{E}].

12. Give an upper bound on E[RT ], function of K,T, δ and the gaps (∆k)k∈[K]. Use that bound
to show that for a well chosen δ ∈ (0, 1), E[RT ] ≤ C1 + C2 log T where C1, C2 can depend on
parameters of the problem, but don’t depend on T .

13. For a well chosen δ ∈ (0, 1), prove an upper bound of the form E[RT ] ≤ C ′1 + C ′2
√
T log T

where C ′1, C ′2 don’t depend on T and C ′2 does not depend on the gaps (∆k)k∈[K] or the means
(µk)k∈[K].
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