
MVA 2021-22 P. Gaillard and R. Degenne

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any
content) is allowed. Answers can be written in French or English.
This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and
3 are exercices on adversarial and stochastic online learning respectively.

Part 1. Appetizers

1. Let Θ = {1, . . . ,K} and (ℓt)1≤t≤T a sequence of adversarial losses from Θ to [0, 1]. Consider
the Follow-The-Leader strategy (FTL) that chooses θ̂t ∈ argminθ∈Θ

{∑t−1
s=1 ℓs(θ)

}
. Provide a

sequence of losses (ℓt) such that FTL incurs a regret larger than (1− 1/K)T − 1.

Solution: We define ℓ1(k) = 1/k2 for all k ∈ [K] and ℓt(k) = 1 if (t − 1) ≡ k (mod K)
and 0 otherwise. One can check that θ̂t = (t − 1) mod K for all t ≥ 2, which implies∑T

t=2 ℓt(θ̂t) = T − 1. Moreover, using
∑T

t=1

∑K
k=1 ℓt(k) ≤ T , there exist k∗ ∈ [K] such that∑T

t=1 ℓt(k
∗) ≤ T/K. Together with the cumulative loss of the FTL, it concludes.

2. What is the difference between a distribution-dependent and a distribution-free regret bound?
What are the two corresponding bounds achieved by the Upper-Confidence-Bound algorithm?

3. Consider an online strategy A(g1, . . . , gt−1) = θ̂t that satisfies

sup
g1,...,gt∈B

sup
θ∈B

{ T∑
t=1

⟨gt, θ̂t⟩ − ⟨gt, θ⟩
}
≤ RT , where B = {x ∈ Rd : ∥x∥2 ≤ G} .

Explain how to convert A into to a strategy minimizing the regret with respect to convex
L-Lipschitz losses ℓt : B → R.

Solution: Use A with gt =
B
L∇ℓt(θ̂t).

4. In stochastic bandits, what are the drawbacks of the Explore-Then-Commit algorithm compared
to UCB?
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Part 2. Online Portfolio Selection

An investor starts with some initial wealth S0 = 1, which she wants to invest over d assets. At
each t ≥ 1, she chooses a distribution wt ∈ ∆d over the assets. An adversary independently chooses
market returns, i.e., a vector xt ∈ Rd

+,∗ such that xt(i) is the price ratio of the i’th asset between
rounds t and t + 1. The ratio between the wealth of the investor at rounds t and t + 1 is ⟨wt, xt⟩.
Thus her total wealth after T rounds is ST =

∏T
t=1⟨wt, xt⟩. Her goal is to maximize ST which can

be done by minimizing the regret

RT :=

T∑
t=1

ℓt(wt)−
T∑
t=1

ℓt(w
∗) = − log

(∏T
t=1⟨wt, xt⟩∏T
t=1⟨w∗, xt⟩

)
,

where ℓt(wt) = − log(⟨wt, xt⟩) and w∗ = argmaxw∈∆d

∏T
t=1⟨w, xt⟩. For simplicity, we assume that

∥∇ℓt(w)∥ ≤ G for all w and t.

Input: w1 ∈ ∆d, γ > 0, A0 = (4γ2)−1Id
For t = 1 to T do

– Play wt and observe gt = ∇ℓt(wt)
– Update

wt+1 = argmin
w∈∆d

(w̃t+1 − w)⊤At(w̃t+1 − w) (ONS)

where w̃t+1 = wt − γ−1A−1
t gt and At = At−1 + gtg

⊤
t

end for

Algorithm 1: Online Newton Step

5. (a) What would be the order (in G, d and T ) of the regret of Online Gradient Descent?

Solution: RT ≤ O(G
√
T )

(b) Show that ℓt are exp-concave for all t ≥ 1 and give the parameter.

Solution: w 7→ exp(−ℓt(w)) = exp(log(⟨w, xt⟩)) = ⟨w, xt⟩ is concave in w. Thus ℓt are
1-exp-concave.

(c) How would you define a continuous version of the exponentially weighted average forecaster
for this problem? What would be the order of its regret and the challenges to implement it?

Solution:

wt =

∫
∆d

w exp(−
∑t−1

s=1 ℓs(w))dµ(w)∫
∆d

exp(−
∑t−1

s=1 ℓs(w))dµ(w)

The regret would be of order O(d log T ). Because of the integral, it is very difficult
to compute and one needs to resort to sophisticated Monte-Carlo sampling schemes to
achieve a polynomial O(T 15) complexity.
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6. The goal of the following questions is to show that Alg. 1 achieves a logarithmic regret bound.

(a) Show that At(w̃t+1 − w∗) = At(wt − w∗)− γ−1gt and deduce

(w̃t+1 − w∗)⊤At(w̃t+1 − w∗) = (wt − w∗)⊤At(wt − w∗)− 2

γ
g⊤t (wt − w∗) +

1

γ2
g⊤t A

−1
t gt .

Solution: For the first equation, use the definition w̃t+1 = wt−γA−1
t gt, substract w∗ on

both sides and multiply by At.
For the second, multiply the transpose of w̃t+1 − w∗ = wt − w∗ − γA−1

t gt with the first
equation.

(b) Show that it implies (and justify)

g⊤t (wt − w∗) ≤ 1

2γ
g⊤t A

−1
t gt +

γ

2
(wt − w∗)⊤At(wt − w∗)− γ

2
(wt+1 − w∗)⊤At(wt+1 − w∗)

Solution: Reorganize the terms of the previous equation and use the Pythagorean the-
orem.

(c) Because ℓt are expconcave, we admit that there exists γ > 0 such that for all w,w′ ∈ ∆d

and t ≥ 1

ℓt(w) ≥ ℓt(w
′) +∇ℓt(w

′)⊤(w − w′) +
γ

2
(w − w′)⊤∇ℓt(w

′)∇ℓt(w
′)⊤(w − w′) .

Show that together with the previous question, it yields RT ≤ 1
2γ

∑T
t=1 g

⊤
t A

−1
t gt +

1
2γ .

Solution: Sum over t, get a telescoping sum and upper-bound the first term

1

2γ
(w1 − w∗)⊤A0(w1 − w∗) ≤ 1

2γ
.

(d) Using that Tr(A−1B) ≤ log
(
det(A)/ det(A − B)

)
for any positive-semidefinite matrices

A ≻ B ≽ 0, prove that
RT ≤ 1

2γ

(
1 + log

det(AT )

det(A0)

)
.

Solution: Substitute

g⊤t A
−1
t gt = Tr(g⊤t A

−1
t gt) = Tr(A−1

t gtg
⊤
t ) ≤ log

( det(At)

det(At−1)

)
into the previous result.

(e) Provide a final regret bound in terms of T,G, γ and d only.

Solution:
RT ≤ 1

2γ

(
1 + d log(1 + 4TG2γ2)

)
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Part 3. Minimax regret in stochastic bandits

Consider a stochastic bandit problem in which K > 1 arms have Gaussian distributions with
variance 1. The distribution of arm k ∈ [K] = {1, . . . ,K} is denoted by νk and has mean µk. We
call such a bandit problem a “Gaussian bandit problem”. At time t ≥ 1, an algorithm picks an arm
kt, then observes a reward Xkt

t . We define the regret at time T by

RT = T max
j∈[K]

µj −
T∑
t=1

µkt .

Algorithm 2 (UCB with known horizon T ) is designed to minimize this regret. We denote by µ∗ the
maximal mean of an arm, µ∗ = maxj∈[K] µj , and denote the gap of arm k ∈ [K] by ∆k = µ∗ − µk.

For t = 1 to K do
– Pull arm kt = t and observe Xkt

t ∼ νkt
– Define µ̂K,kt = Xkt

t and NK,kt = 1
end for
For t = K + 1 to T do

– Compute kt = argmaxk∈[K] µ̂t−1,k +
√

4 log T
Nt−1,k

– Play arm kt and observe Xkt
t ∼ νkt

– Define Nt,kt = Nt−1,kt + 1 and Nt,k = Nt−1,k for k ̸= kt
– Define µ̂t,kt = µ̂t−1,kt +

1
t (X

kt
t − µ̂t−1,kt) and µ̂t,k = µ̂t−1,k for k ̸= kt

end for

Algorithm 2: Upper Confidence Bound (UCB) with known horizon T

7. The goal of this question is to prove a distribution-free regret bound for UCB (in the form
shown in Algorithm 2).

(a) Write the expected regret E[RT ] as an expression involving the gaps and the expected
number of pulls E[NT,k].

Solution:

ERT =

K∑
k=1

∆KE[NT,k]

(b) Show that for all x ≥ 0, the expected regret of UCB is bounded from above by Tx +∑
k:∆k>x(3∆k+

16 log T
x ). You can use without proof that for all arms, E[NT,k] ≤ 3+ 16 log T

∆2
k

.
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Solution:

ERT ≤ Tx+
∑
∆k>x

∆KE[NT,k] ≤ Tx+
∑

k:∆k>x

(3∆k +
16 log T

x
)

(c) Prove an upper bound on the expected regret of the form ERT ≤ Q(T,K) + 3
∑K

k=1∆k,
where Q(T,K) is sub-linear in T and K and does not depend on the gaps.

Solution:

ERT ≤ Tx+
∑

k:∆k>x

16 log T

x
+ 3

∑
k:∆k>x

∆k

≤ Tx+K
16 log T

x
+ 3

K∑
k=1

∆k

≤ ... optimize over x

8. Show that for any algorithm, either the expected regret verifies ERT ≥
∑K

k=1∆k on all Gaussian
bandit problems, or there exists one Gaussian bandit problem on which the algorithm has linear
regret.

Solution: If the regret does not have that value, then there exists an arm which is not pulled
at all. The regret is linear is that arm is the optimal one.

9. We will now prove lower bounds on the regret of any algorithm. Let ∆ > 0 and µ =
(∆, 0, . . . , 0) ∈ RK be the vector of means of a Gaussian bandit problem, which we denote
by ν. For i ∈ {2, . . . ,K}, let µi = (∆, 0, . . . , 0, 2∆, 0, . . . , 0) ∈ RK (equal to µ except at coor-
dinate i, where its value is 2∆) be another mean vector. We call the corresponding Gaussian
bandit problem νi. We write Eν [...] for the expectation when the algorithm plays on problem
ν, and Eνi [...] the expectation on problem νi.

Let jmin = argmink>1 Eν [NT,k] (any of them if the argmin is not unique).

(a) Prove that Eν [NT,jmin ] ≤ T
K−1 .

Solution:

T =
∑
k

Eν [NT,k] ≥
∑
k>1

Eν [NT,k] ≥ (K − 1)min
k>1

Eν [NT,k]

(b) Prove that Eν [RT ] ≥ T∆
2 Pν(NT,1 ≤ T/2) and that for any i > 1, Eνi [RT ] ≥ T∆

2 Pνi(NT,1 >
T/2).

(c) Let HT = (Xk1
1 , . . . , XkT

T ) be the history of observations up to time T . Let PHT
ν be

its distribution under problem ν and PHT

νi
be its distribution under problem νi. Give

an expression of the Kullback-Leibler divergence KL(PHT
ν ,PHT

νi
) which uses Eν [NT,k] and
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KL(νk, ν
i
k) (Kullback-Leibler divergence between the Gaussian distributions of arm k under

the two bandit problems) for all k ∈ [K].

Solution:

KL(PHT
ν ,PHT

νi
) =

∑
k

Eν [NT,k] KL(νk, ν
i
k) .

(d) Assume the following consequence of the Bretagnole-Huber inequality (and of the question
above): for any event A and its complement Ac, Pν(A)+Pνi(A

c) ≥ exp
(
−1

2Eν [NT,i](µi − µi
i)
2
)
.

Prove that Eν [RT ] + Eνjmin [RT ] ≥ T∆
2 exp

(
−2T∆2

K−1

)
.

(e) Prove that there exists a constant C such that for T ≥ K and for any algorithm, there
exists a Gaussian bandit problem ν ′ with mean vector µ′ ∈ [0, 1]K such that

E[RT ] ≥ C
√
(K − 1)T .

Solution: Take ∆ =
√
(K − 1)/4T ≤ 1/2.

max
ν,νjmin

E[RT ] ≥ T∆exp

(
− 2T∆2

K − 1

)
=
√

(K − 1)T/4 exp (−1/2)
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