SEQUENTIAL LEARNING

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

This exam is made of 3 parts. The first part contains varied questions on the course. Parts 2 and 3 are exercises on adversarial and stochastic online learning respectively.

Part 1. Appetizers

- 1. Let $\Theta = \{1, \dots, K\}$ and $(\ell_t)_{1 \le t \le T}$ a sequence of adversarial losses from Θ to [0, 1]. Consider the Follow-The-Leader strategy (FTL) that chooses $\widehat{\theta}_t \in \arg\min_{\theta \in \Theta} \{\sum_{s=1}^{t-1} \ell_s(\theta)\}$. Provide a sequence of losses (ℓ_t) such that FTL incurs a regret larger than (1 1/K)T 1.
- 2. What is the difference between a distribution-dependent and a distribution-free regret bound? What are the two corresponding bounds achieved by the Upper-Confidence-Bound algorithm?
- 3. Consider an online strategy $\mathcal{A}(g_1,\ldots,g_{t-1})=\widehat{\theta}_t$ that satisfies

$$\sup_{g_1, \dots, g_t \in B} \sup_{\theta \in B} \left\{ \sum_{t=1}^T \langle g_t, \widehat{\theta}_t \rangle - \langle g_t, \theta \rangle \right\} \le R_T, \quad \text{where} \quad \mathcal{B} = \left\{ x \in \mathbb{R}^d : \|x\|_2 \le G \right\}.$$

Explain how to convert \mathcal{A} into to a strategy minimizing the regret with respect to convex L-Lipschitz losses $\ell_t : \mathcal{B} \to \mathbb{R}$.

4. In stochastic bandits, what are the drawbacks of the Explore-Then-Commit algorithm compared to UCB?

Part 2. Online Portfolio Selection

An investor starts with some initial wealth $S_0 = 1$, which she wants to invest over d assets. At each $t \geq 1$, she chooses a distribution $w_t \in \Delta_d$ over the assets. An adversary independently chooses market returns, i.e., a vector $x_t \in \mathbb{R}^d_{+,*}$ such that $x_t(i)$ is the price ratio of the i'th asset between rounds t and t+1. The ratio between the wealth of the investor at rounds t and t+1 is $\langle w_t, x_t \rangle$. Thus her total wealth after T rounds is $S_T = \prod_{t=1}^T \langle w_t, x_t \rangle$. Her goal is to maximize S_T which can be done by minimizing the regret

$$R_T := \sum_{t=1}^T \ell_t(w_t) - \sum_{t=1}^T \ell_t(w^*) = -\log\left(\frac{\prod_{t=1}^T \langle w_t, x_t \rangle}{\prod_{t=1}^T \langle w^*, x_t \rangle}\right),$$

where $\ell_t(w_t) = -\log(\langle w_t, x_t \rangle)$ and $w^* = \arg\max_{w \in \Delta_d} \prod_{t=1}^T \langle w, x_t \rangle$. For simplicity, we assume that $\|\nabla \ell_t(w)\| \leq G$ for all w and t.

Input:
$$w_1 \in \Delta_d$$
, $\gamma > 0$, $A_0 = (4\gamma^2)^{-1}I_d$
For $t = 1$ to T do

Play w_t and observe $g_t = \nabla \ell_t(w_t)$

Update
$$w_{t+1} = \underset{w \in \Delta_d}{\operatorname{arg\,min}} (\tilde{w}_{t+1} - w)^{\top} A_t(\tilde{w}_{t+1} - w)$$
where $\tilde{w}_{t+1} = w_t - \gamma^{-1} A_t^{-1} g_t$ and $A_t = A_{t-1} + g_t g_t^{\top}$
end for

Algorithm 1: Online Newton Step

- 5. (a) What would be the order (in G, d and T) of the regret of Online Gradient Descent?
 - (b) Show that ℓ_t are exp-concave for all $t \geq 1$ and give the parameter.
 - (c) How would you define a continuous version of the exponentially weighted average forecaster for this problem? What would be the order of its regret and the challenges to implement it?
- 6. The goal of the following questions is to show that Alg. 1 achieves a logarithmic regret bound.
 - (a) Show that $A_t(\tilde{w}_{t+1} w^*) = A_t(w_t w^*) \gamma^{-1}g_t$ and deduce $(\tilde{w}_{t+1} w^*)^\top A_t(\tilde{w}_{t+1} w^*) = (w_t w^*)^\top A_t(w_t w^*) \frac{2}{\gamma}g_t^\top (w_t w^*) + \frac{1}{\gamma^2}g_t^\top A_t^{-1}g_t.$
 - (b) Show that it implies (and justify)

$$g_t^{\top}(w_t - w^*) \le \frac{1}{2\gamma} g_t^{\top} A_t^{-1} g_t + \frac{\gamma}{2} (w_t - w^*)^{\top} A_t (w_t - w^*) - \frac{\gamma}{2} (w_{t+1} - w^*)^{\top} A_t (w_{t+1} - w^*)$$

(c) Because ℓ_t are exproneave, we **admit** that there exists $\gamma > 0$ such that for all $w, w' \in \Delta_d$ and $t \geq 1$

$$\ell_t(w) \ge \ell_t(w') + \nabla \ell_t(w')^{\top}(w - w') + \frac{\gamma}{2}(w - w')^{\top} \nabla \ell_t(w') \nabla \ell_t(w')^{\top}(w - w')$$
.

Show that together with the previous question, it yields $R_T \leq \frac{1}{2\gamma} \sum_{t=1}^T g_t^\top A_t^{-1} g_t + \frac{1}{2\gamma}$.

(d) Using that $\operatorname{Tr}(A^{-1}B) \leq \log\left(\det(A)/\det(A-B)\right)$ for any positive-semidefinite matrices $A \succ B \succcurlyeq 0$, prove that $R_T \leq \frac{1}{2\gamma} \left(1 + \log\frac{\det(A_T)}{\det(A_0)}\right).$

(e) Provide a final regret bound in terms of T, G, γ and d only.

Part 3. Minimax regret in stochastic bandits

Consider a stochastic bandit problem in which K > 1 arms have Gaussian distributions with variance 1. The distribution of arm $k \in [K] = \{1, \ldots, K\}$ is denoted by ν_k and has mean μ_k . We call such a bandit problem a "Gaussian bandit problem". At time $t \geq 1$, an algorithm picks an arm k_t , then observes a reward $X_t^{k_t}$. We define the regret at time T by

$$R_T = T \max_{j \in [K]} \mu_j - \sum_{t=1}^T \mu_{k_t}$$
.

Algorithm 2 (UCB with known horizon T) is designed to minimize this regret. We denote by μ^* the maximal mean of an arm, $\mu^* = \max_{i \in [K]} \mu_i$, and denote the gap of arm $k \in [K]$ by $\Delta_k = \mu^* - \mu_k$.

```
For t=1 to K do

- Pull arm k_t=t and observe X_t^{k_t} \sim \nu_{k_t}

- Define \widehat{\mu}_{K,k_t} = X_t^{k_t} and N_{K,k_t} = 1
end for

For t=K+1 to T do

- Compute k_t = \arg\max_{k \in [K]} \widehat{\mu}_{t-1,k} + \sqrt{\frac{4\log T}{N_{t-1,k}}}

- Play arm k_t and observe X_t^{k_t} \sim \nu_{k_t}

- Define N_{t,k_t} = N_{t-1,k_t} + 1 and N_{t,k} = N_{t-1,k} for k \neq k_t

- Define \widehat{\mu}_{t,k_t} = \widehat{\mu}_{t-1,k_t} + \frac{1}{t}(X_t^{k_t} - \widehat{\mu}_{t-1,k_t}) and \widehat{\mu}_{t,k} = \widehat{\mu}_{t-1,k} for k \neq k_t end for
```

Algorithm 2: Upper Confidence Bound (UCB) with known horizon T

- 7. The goal of this question is to prove a distribution-free regret bound for UCB (in the form shown in Algorithm 2).
 - (a) Write the expected regret $\mathbb{E}[R_T]$ as an expression involving the gaps and the expected number of pulls $\mathbb{E}[N_{T,k}]$.
 - (b) Show that for all $x \ge 0$, the expected regret of UCB is bounded from above by $Tx + \sum_{k:\Delta_k > x} (3\Delta_k + \frac{16\log T}{x})$. You can use without proof that for all arms, $\mathbb{E}[N_{T,k}] \le 3 + \frac{16\log T}{\Delta_k^2}$.
 - (c) Prove an upper bound on the expected regret of the form $\mathbb{E}R_T \leq Q(T,K) + 3\sum_{k=1}^K \Delta_k$, where Q(T,K) is sub-linear in T and K and does not depend on the gaps.
- 8. Show that for any algorithm, either the expected regret verifies $\mathbb{E}R_T \geq \sum_{k=1}^K \Delta_k$ on all Gaussian bandit problems, or there exists one Gaussian bandit problem on which the algorithm has linear regret.
- 9. We will now prove lower bounds on the regret of any algorithm. Let $\Delta > 0$ and $\mu = (\Delta, 0, ..., 0) \in \mathbb{R}^K$ be the vector of means of a Gaussian bandit problem, which we denote by ν . For $i \in \{2, ..., K\}$, let $\mu^i = (\Delta, 0, ..., 0, 2\Delta, 0, ..., 0) \in \mathbb{R}^K$ (equal to μ except at coordinate i, where its value is 2Δ) be another mean vector. We call the corresponding Gaussian

bandit problem ν^i . We write $\mathbb{E}_{\nu}[...]$ for the expectation when the algorithm plays on problem ν , and $\mathbb{E}_{\nu^i}[...]$ the expectation on problem ν^i .

Let $j_{\min} = \arg\min_{k>1} \mathbb{E}_{\nu}[N_{T,k}]$ (any of them if the argmin is not unique).

- (a) Prove that $\mathbb{E}_{\nu}[N_{T,j_{\min}}] \leq \frac{T}{K-1}$.
- (b) Prove that $\mathbb{E}_{\nu}[R_T] \geq \frac{T\Delta}{2} \mathbb{P}_{\nu}(N_{T,1} \leq T/2)$ and that for any i > 1, $\mathbb{E}_{\nu^i}[R_T] \geq \frac{T\Delta}{2} \mathbb{P}_{\nu^i}(N_{T,1} > T/2)$.
- (c) Let $H_T = (X_1^{k_1}, \dots, X_T^{k_T})$ be the history of observations up to time T. Let $\mathbb{P}^{H_T}_{\nu}$ be its distribution under problem ν and $\mathbb{P}^{H_T}_{\nu^i}$ be its distribution under problem ν^i . Give an expression of the Kullback-Leibler divergence $\mathrm{KL}(\mathbb{P}^{H_T}_{\nu}, \mathbb{P}^{H_T}_{\nu^i})$ which uses $\mathbb{E}_{\nu}[N_{T,k}]$ and $\mathrm{KL}(\nu_k, \nu_k^i)$ (Kullback-Leibler divergence between the Gaussian distributions of arm k under the two bandit problems) for all $k \in [K]$.
- (d) Assume the following consequence of the Bretagnole-Huber inequality (and of the question above): for any event A and its complement A^c , $\mathbb{P}_{\nu}(A) + \mathbb{P}_{\nu^i}(A^c) \geq \exp\left(-\frac{1}{2}\mathbb{E}_{\nu}[N_{T,i}](\mu_i \mu_i^i)^2\right)$. Prove that $\mathbb{E}_{\nu}[R_T] + \mathbb{E}_{\nu^{j_{\min}}}[R_T] \geq \frac{T\Delta}{2} \exp\left(-\frac{2T\Delta^2}{K-1}\right)$.
- (e) Prove that there exists a constant C such that for $T \geq K$ and for any algorithm, there exists a Gaussian bandit problem ν' with mean vector $\mu' \in [0,1]^K$ such that

$$\mathbb{E}[R_T] \ge C\sqrt{(K-1)T} \ .$$