
MVA 2020-21 P. Gaillard and R. Degenne

Sequential Learning
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes
(with any content) is allowed. Answers can be written in French or English.

Part 1. Appetizers
1. Explain the difference between the pseudo regret and the regret of an online learn-

ing algorithm (in an adversarial setting).

2. (Doubling trick) Assume that an online learning algorithm A provides, for any
known beforehand fixed horizon T , a regret bound RT (A) ≤ CTα for some C > 0
and α > 0. Explain how to convert it into an algorithm A∞ which runs forever
without knowing the horizon.

3. (UCB) Consider a stochastic bandit with K arms, distributions with support in
[0, 1] and means µ(1), . . . , µ(K). The UCB algorithm pulls arm kt = arg max µ̂t(k)+√

2 log t
Nt(k)

, where Nt(k) =
∑t−1

s=1 I{ks = k} is the number of pulls of arm k before t and
µ̂t(k) is an estimation of the mean of arm k. Suppose that for all t ∈ {1, . . . , T},
for all k ∈ [K], |µ(k)− µ̂t(k)| ≤

√
2 log t
Nt(k)

.

(a) Show that

Nt(kt) ≤
8 log t

∆2
k

.

(b) Prove an upper bound on the regret RT = T maxk∈[K] µ(k)−
∑T

t=1 µ(kt).

4. (FTL) Prove that there exists stochastic bandit problems with distributions with
support in [0, 1] on which the Follow-The-Leader algorithm has linear expected
regret ERT = T maxk∈[K] µ(k) − E

∑T
t=1 µ(kt) (where µ(k) is the mean reward of

arm k).
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Part 2. Successive rejects for best arm identification

We assume there are K unknown distributions ν(k) over [0, 1] with mean µ(k) for
k ∈ [K]. For each arm k, X1(k), . . . , XT (k) are i.i.d. random variables with distribution
ν(k). When the player pulls arm k for the nth time, the environment returns the reward
Xn(k) and the player observes that reward. We define X̂n(k)

def
= (1/n)

∑n
m=1 Xm(k).

We call k∗ the optimal arm, i.e., k∗ ∈ arg maxk∈[K] µ(k). We suppose that k∗ is unique.

We define log(K) = 1
2

+
∑K

i=2
1
i
. We define n0 = 0 and for j ∈ {1, . . . , K − 1},

nj =
⌈

1
log(K)

T−K
K+1−j

⌉
.

Initialization: the set of active arms is A1 = {1, . . . , K}.
For phases j = 1, . . . , K − 1

– for all k ∈ Aj, pull arm k for nj − nj−1 times,
– compute kj ∈ arg mink∈Aj

X̂nj
(k),

– deactivate arm kj: the set of active arms becomes Ak+1 = Ak \ {kj}.
Recommend k̂, the only element of AK .

Algorithm 1: Successive rejects algorithm

5. Algorithm 1 is designed for best arm identification with budget T . Prove that the
total number of pulls of algorithm 1 is not larger than T .

6. We consider the 2-armed stochastic bandit framework, i.e. K = 2. Suppose
without loss of generality that k∗ = 1.

(a) Prove that for α ≥ 0,

P
(∣∣X̂n1(1)− X̂n1(2)− µ(1) + µ(2)

∣∣ > α
)
≤ 2e−n1α2/2 .

(b) When it stops, the algorithm recommends k̂, the only arm in A2. Let ∆ =
µ(1)− µ(2) > 0. Prove that

P
(
k̂ 6= k∗

)
≤ 2e−n1∆2/2 .
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7. We now consider the general case K ≥ 2. We suppose without loss of generality
that µ(1) > µ(2) ≥ . . . ≥ µ(K) and we define ∆k = µ(1)−µ(k) for k ∈ {2, . . . , K}.
(a) What is the number of pulls of arm k at the end of phase j, if k ∈ Aj?

(b) Prove that if 1 ∈ Aj and 1 /∈ Aj+1, then X̂nj
(1) ≤ maxk∈{K+1−j,...,K} X̂nj

(k).
Note that even if the algorithm pulls arm k less than nj times, X̂nj

(k) is still
defined.

(c) Deduce from the previous question that the probability that algorithm 1 rec-
ommends k̂ 6= 1 is

P
(
k̂ 6= 1

)
≤ 2

K−1∑
j=1

K∑
k=K+1−j

e−nj∆2
k/2 ≤ 2

K−1∑
j=1

je−nj∆2
K+1−j/2 .

(d) Let H2 = maxk≥2
k

∆2
k
. Prove that

P
(
k̂ 6= 1

)
≤ 2

K(K − 1)

2
e
− T−K

log(K)H2 .

Part 3. Regularized follow the leader (RFTL)

Let Θ ⊆ Rd be a compact convex decision space and η > 0. We consider the following
setting. At each t ≥ 1, the learner chooses θt ∈ Θ, then the environment chooses a
convex loss `t : Θ → R and reveals it to the learner. The goal of the learner is to
minimize his regret

RegretT (θ) =
T∑
t=1

`t(θt)−
T∑
t=1

`t(θ), ∀θ ∈ Θ .

We consider the RFTL algorithm defined in Algorithm 2, which depends on a strongly
convex, smooth, and twice differentiable regularization function R : θ → R.

8. Recall the gradient trick and provide a corresponding upper-bound on the regret.

9. (a) Show by induction that R(θ)
η

+
∑T

t=1 g
>
t θ ≥

R(θ1)
η

+
∑T

t=1 g
>
t θt+1 for any θ ∈ Θ.
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Input: η > 0, regularization function R > 0, and a compact and convex set Θ ⊂ Rd

Let θ1 = arg minθ∈Θ

{
R(θ)

}
For t = 1 to T do

– Play θt and observe gt = ∇`t(θt)
– Update

θt+1 = arg min
θ∈Θ

{
η

t∑
s=1

g>s θ +R(θ)

}
end for

Algorithm 2: Regularized Follow the Leader

(b) Show that for any θ ∈ Θ

RegretT (θ) ≤
T∑
t=1

g>t
(
θt − θt+1

)
+
R(θ)−R(θ1)

η
.

We recall that the Bregman divergence BR(θ||θ′) with respect to the function R is
defined as

BR(θ||θ′) = R(θ)−R(θ′)−∇R(θ′)>(θ − θ′) .

We admit that for each t ≥ 1, there exists a local norm ‖ · ‖t such that BR(θt||θt+1) =
1
2
‖θt − θt+1‖2

t , and we denote by ‖ · ‖∗t its dual norm that satifies the generalized
Cauchy-Schwarz inequality x>y ≤ ‖x‖∗t ‖y‖t for all x, y ∈ Rd.

10. (a) Compute BR(θ||θ′), ‖ · ‖t and ‖ · ‖∗t for R(θ) = 1
2
‖θ − θ0‖2.

(b) Show that φt(θt) ≥ φt(θt+1) +BR(θt||θt+1) where φt(θ) = η
∑t

s=1 g
>
s θ +R(θ).

(c) Deduce that BR(θt||θt+1) ≤ ηg>t (θt − θt+1).

(d) Show that g>t (θt − θt+1) ≤ 2η‖gt‖∗t
2.

(e) Let GR, DR > 0 such that for all t ≥ 1, ‖gt‖∗t ≤ GR and maxθ,θ′∈Θ{R(θ) −
R(θ′)} ≤ D2

R. Show that for any θ ∈ Θ

RegretT (θ) ≤ 2DRGR

√
2T

for a well-chosen parameter η > 0 that needs to be explicited.
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