SEQUENTIAL LEARNING FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

Part 1. Appetizers

- 1. Explain the difference between the pseudo regret and the regret of an online learning algorithm (in an adversarial setting).
- 2. (Doubling trick) Assume that an online learning algorithm \mathcal{A} provides, for any known beforehand fixed horizon T, a regret bound $R_T(\mathcal{A}) \leq CT^{\alpha}$ for some C > 0 and $\alpha > 0$. Explain how to convert it into an algorithm \mathcal{A}_{∞} which runs forever without knowing the horizon.
- 3. (UCB) Consider a stochastic bandit with K arms, distributions with support in [0, 1] and means $\mu(1), \ldots, \mu(K)$. The UCB algorithm pulls arm $k_t = \arg \max \widehat{\mu}_t(k) + \sqrt{\frac{2\log t}{N_t(k)}}$, where $N_t(k) = \sum_{s=1}^{t-1} \mathbb{I}\{k_s = k\}$ is the number of pulls of arm k before t and $\widehat{\mu}_t(k)$ is an estimation of the mean of arm k. Suppose that for all $t \in \{1, \ldots, T\}$, for all $k \in [K]$, $|\mu(k) \widehat{\mu}_t(k)| \leq \sqrt{\frac{2\log t}{N_t(k)}}$.
 - (a) Show that

$$N_t(k_t) \le \frac{8\log t}{\Delta_k^2}$$

- (b) Prove an upper bound on the regret $R_T = T \max_{k \in [K]} \mu(k) \sum_{t=1}^T \mu(k_t)$.
- 4. (FTL) Prove that there exists stochastic bandit problems with distributions with support in [0, 1] on which the Follow-The-Leader algorithm has linear expected regret $\mathbb{E}R_T = T \max_{k \in [K]} \mu(k) \mathbb{E} \sum_{t=1}^T \mu(k_t)$ (where $\mu(k)$ is the mean reward of arm k).

Part 2. Successive rejects for best arm identification

We assume there are K unknown distributions $\nu(k)$ over [0,1] with mean $\mu(k)$ for $k \in [K]$. For each arm $k, X_1(k), \ldots, X_T(k)$ are i.i.d. random variables with distribution $\nu(k)$. When the player pulls arm k for the n^{th} time, the environment returns the reward $X_n(k)$ and the player observes that reward. We define $\widehat{X}_n(k) \stackrel{\text{def}}{=} (1/n) \sum_{m=1}^n X_m(k)$. We call k^* the optimal arm, i.e., $k^* \in \arg \max_{k \in [K]} \mu(k)$. We suppose that k^* is unique. We define $\overline{\log}(K) = \frac{1}{2} + \sum_{i=2}^K \frac{1}{i}$. We define $n_0 = 0$ and for $j \in \{1, \ldots, K-1\}$, $n_j = \left\lceil \frac{1}{\log(K)} \frac{T-K}{K+1-j} \right\rceil$.

Initialization: the set of active arms is $A_1 = \{1, \ldots, K\}$. For phases $j = 1, \ldots, K - 1$ – for all $k \in A_j$, pull arm k for $n_j - n_{j-1}$ times, – compute $k_j \in \arg\min_{k \in A_j} \widehat{X}_{n_j}(k)$, – deactivate arm k_j : the set of active arms becomes $A_{k+1} = A_k \setminus \{k_j\}$. Recommend \widehat{k} , the only element of A_K .

Algorithm 1: Successive rejects algorithm

- 5. Algorithm 1 is designed for best arm identification with budget T. Prove that the total number of pulls of algorithm 1 is not larger than T.
- 6. We consider the 2-armed stochastic bandit framework, i.e. K = 2. Suppose without loss of generality that $k^* = 1$.
 - (a) Prove that for $\alpha \geq 0$,

$$\mathbb{P}\Big(\left|\widehat{X}_{n_1}(1) - \widehat{X}_{n_1}(2) - \mu(1) + \mu(2)\right| > \alpha\Big) \le 2e^{-n_1\alpha^2/2}$$

(b) When it stops, the algorithm recommends \hat{k} , the only arm in A_2 . Let $\Delta = \mu(1) - \mu(2) > 0$. Prove that

$$\mathbb{P}\left(\widehat{k} \neq k^*\right) \le 2e^{-n_1 \Delta^2/2} \,.$$

- 7. We now consider the general case $K \ge 2$. We suppose without loss of generality that $\mu(1) > \mu(2) \ge \ldots \ge \mu(K)$ and we define $\Delta_k = \mu(1) \mu(k)$ for $k \in \{2, \ldots, K\}$.
 - (a) What is the number of pulls of arm k at the end of phase j, if $k \in A_j$?
 - (b) Prove that if $1 \in A_j$ and $1 \notin A_{j+1}$, then $\widehat{X}_{n_j}(1) \leq \max_{k \in \{K+1-j,\dots,K\}} \widehat{X}_{n_j}(k)$. Note that even if the algorithm pulls arm k less than n_j times, $\widehat{X}_{n_j}(k)$ is still defined.
 - (c) Deduce from the previous question that the probability that algorithm 1 recommends $\hat{k} \neq 1$ is

$$\mathbb{P}\left(\widehat{k} \neq 1\right) \le 2\sum_{j=1}^{K-1} \sum_{k=K+1-j}^{K} e^{-n_j \Delta_k^2/2} \le 2\sum_{j=1}^{K-1} j e^{-n_j \Delta_{K+1-j}^2/2}.$$

(d) Let $H_2 = \max_{k \ge 2} \frac{k}{\Delta_k^2}$. Prove that

$$\mathbb{P}\left(\widehat{k} \neq 1\right) \leq 2\frac{K(K-1)}{2}e^{-\frac{T-K}{\log(K)H_2}}.$$

Part 3. Regularized follow the leader (RFTL)

Let $\Theta \subseteq \mathbb{R}^d$ be a compact convex decision space and $\eta > 0$. We consider the following setting. At each $t \geq 1$, the learner chooses $\theta_t \in \Theta$, then the environment chooses a convex loss $\ell_t : \Theta \to \mathbb{R}$ and reveals it to the learner. The goal of the learner is to minimize his regret

$$\operatorname{Regret}_{T}(\theta) = \sum_{t=1}^{T} \ell_{t}(\theta_{t}) - \sum_{t=1}^{T} \ell_{t}(\theta), \qquad \forall \theta \in \Theta.$$

We consider the RFTL algorithm defined in Algorithm 2, which depends on a strongly convex, smooth, and twice differentiable regularization function $R: \theta \to \mathbb{R}$.

- 8. Recall the gradient trick and provide a corresponding upper-bound on the regret.
- 9. (a) Show by induction that $\frac{R(\theta)}{\eta} + \sum_{t=1}^{T} g_t^{\top} \theta \ge \frac{R(\theta_1)}{\eta} + \sum_{t=1}^{T} g_t^{\top} \theta_{t+1}$ for any $\theta \in \Theta$.

Input: $\eta > 0$, regularization function R > 0, and a compact and convex set $\Theta \subset \mathbb{R}^d$ Let $\theta_1 = \arg \min_{\theta \in \Theta} \{ R(\theta) \}$ For t = 1 to T do – Play θ_t and observe $g_t = \nabla \ell_t(\theta_t)$ – Update $\theta_{t+1} = \arg \min_{\theta \in \Theta} \left\{ \eta \sum_{s=1}^t g_s^\top \theta + R(\theta) \right\}$ end for

Algorithm 2: Regularized Follow the Leader

(b) Show that for any $\theta \in \Theta$

$$\operatorname{Regret}_{T}(\theta) \leq \sum_{t=1}^{T} g_{t}^{\top} (\theta_{t} - \theta_{t+1}) + \frac{R(\theta) - R(\theta_{1})}{\eta}.$$

We recall that the Bregman divergence $B_R(\theta || \theta')$ with respect to the function R is defined as

$$B_R(\theta || \theta') = R(\theta) - R(\theta') - \nabla R(\theta')^\top (\theta - \theta')$$

We admit that for each $t \ge 1$, there exists a local norm $\|\cdot\|_t$ such that $B_R(\theta_t||\theta_{t+1}) = \frac{1}{2}\|\theta_t - \theta_{t+1}\|_t^2$, and we denote by $\|\cdot\|_t^*$ its dual norm that satisfies the generalized Cauchy-Schwarz inequality $x^\top y \le \|x\|_t^* \|y\|_t$ for all $x, y \in \mathbb{R}^d$.

10. (a) Compute $B_R(\theta || \theta')$, $\| \cdot \|_t$ and $\| \cdot \|_t^*$ for $R(\theta) = \frac{1}{2} \| \theta - \theta_0 \|^2$.

(b) Show that
$$\phi_t(\theta_t) \ge \phi_t(\theta_{t+1}) + B_R(\theta_t || \theta_{t+1})$$
 where $\phi_t(\theta) = \eta \sum_{s=1}^t g_s^\top \theta + R(\theta)$.

- (c) Deduce that $B_R(\theta_t || \theta_{t+1}) \leq \eta g_t^{\top}(\theta_t \theta_{t+1}).$
- (d) Show that $g_t^{\top}(\theta_t \theta_{t+1}) \leq 2\eta \|g_t\|_t^{*2}$.
- (e) Let $G_R, D_R > 0$ such that for all $t \ge 1$, $||g_t||_t^* \le G_R$ and $\max_{\theta, \theta' \in \Theta} \{R(\theta) R(\theta')\} \le D_R^2$. Show that for any $\theta \in \Theta$

$$\operatorname{Regret}_T(\theta) \le 2D_R G_R \sqrt{2T}$$

for a well-chosen parameter $\eta > 0$ that needs to be explicited.