
MVA 2019-20 Pierre Gaillard

Predictions of Individual
Sequences
Final Examination

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes
(with any content) is allowed. Answers can be written in French or English.

The notation . can be used to say "less or equal than, up to some universal (additive
or multiplicative) constant".

Part 1. Appetizers
Let A be any online learning algorithm.

1. Explain the difference between the pseudo regret and the regret of A.

2. Assume that the losses are in [−1, 1] and that for all δ > 0 the regret of A is
upper-bounded as RT (A) ≤ C log(1/δ) , for some C > 0 with probability at least
1− δ. Prove the upper-bound on the expected regret E[RT (A)] ≤ C.

3. (Doubling trick) Assume that A provides, for any known beforehand fixed horizon
T , a regret bound RT (A) ≤ CTα for some C > 0 and α > 0.

(a) Explain how to convert it into an algorithm A∞ which runs forever without
knowing the horizon.

(b) Prove the corresponding regret bound.
(c) What regret bound do you get if RT (A) = C log T?

4. (Linear regret) Assume that the algorithm A is determinist.

(a) If A is asked to provide at each round t ≥ 1, an action θt ∈ {1, . . . , K}. Prove
that there exists a sequence of loss functions f1, . . . , fT ∈ [0, 1]K such that

RT (A) =
T∑
t=1

ft(θt)− min
k∈[K]

T∑
t=1

ft(k) ≥
(

1− 1

K

)
T .
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(b) If A is asked to provide at each round t ≥ 1, an action θt ∈ ∆K = {θ ∈
[0, 1]K : ‖θ‖1 = 1}. Prove that there exists a sequence of linear loss functions
g1, . . . , gT ∈ [0, 1]K such that

T∑
t=1

θ>t gt −
T∑
t=1

min
θ∈[K]

θ>gt ≥
(

1− 1

K

)
T .

5. Show why Online Mirrored Descent with negative entropyR(x) =
∑K

i=1 x(i) log x(i)
as regularization is equivalent to Exponential Gradient (Exponentially Weighted
Average (EWA) forecaster with gradient trick).

Part 2. Successive elimination for stochastic bandits

For t = 1, . . . , T
– First, pull the two arms al-

ternatively until there exists
k, k′ ∈ {1, 2} such that

UCBt(k) < LCBt(k
′)

– Then, abandon arm k and
play arm k′ for the remaining
rounds.

(a) K = 2

Initialization: all arms in [K] are
active.

For t = 1, . . . , T
– pull all active arms alterna-

tively;
– if there exists k and k′ ∈ [K]

such that

UCBt(k) < LCBt(k
′)

deactivate arm k.
(b) K ≥ 2

Algorithm 1: Successive elimination algorithm

Setting and notations. We assume there are K unknown distributions ν(k) over [0, 1]
with mean µ(k) for k ∈ [K]. At each time t ≥ 1, the player chooses some action
kt ∈ [K], the environment draws the reward Xt(kt) ∼ ν(kt) and the player observes
Xt(kt). We define Nt(k)

def
=
∑t

s=1 1{kt=k} the number of times arm k was played before
t and µ̂t(k)

def
= (1/Nt(k))

∑t
s=1Xt(k)1{k=kt} the empirical mean of arm k at time t.

We call k∗ the optimal arm, i.e., k∗ ∈ arg maxk∈[K] µ(k).

6. We consider the 2-armed stochastic bandit framework, i.e. K = 2 with Alg. 1(a).
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(a) Prove that for rt(k) =
√

2(log T )/Nt(k), we have

P
(
∀t ∈ [T ], ∀k ∈ [K],

∣∣µ̂t(k)− µ(k)
∣∣ ≤ rt(k)

)
≤ 1− 2

T 2
.

(b) We define UCBt(k)
def
= µ̂t(k) + rt(k) and LCBt(k)

def
= µ̂t(k) − rt(k). Prove

that

R̄T = E

[
max
k∈[K]

T∑
t=1

µ(k)−
T∑
t=1

Xt(kt)

]
.
√
T log T .

7. We now consider the general case K ≥ 2 (Alg. 1(b)). To ease the analysis, in
the sequel, we consider the clean (high probability) event such that for all k, t,
µ(k) ∈ [LCBt(k), UCBt(k)].

(a) Prove that for all suboptimal arms k ∈ [K]

∆(k)
def
= µ(k∗)− µ(k) . rT (k) .

√
log T

NT (k)
.

In other words, a bad arm cannot be played too many times.

(b) Prove that therefore the pseudo regret satisfies R̄T . log T
∑K

k=1

√
NT (k) .

(c) Conclude that R̄T .
√
KT log T .

(d) Using the result of question 7a), show that we also have

R̄T .
∑

k:∆(k)>0

log T

∆(k)
.

Part 3. Continuous Exponential Weights

Setting and notation. Let Θ ⊆ Rd be a compact convex decision space and η > 0. A
function f : Θ 7→ R is said η-exp-concave if θ 7→ e−ηf(θ) is concave over Θ. We consider
the following setting of online prediction. At each round t ≥ 1, the learner chooses
θt ∈ X , then the environment chooses a continuous η-exp-concave loss ft : Θ → [0, 1]
and reveals it to the learner.

8. Determine the set of η (if any) for which the following functions are η-exp-concave.
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(a) the squared loss f(θ) = ‖θ − θ∗‖2
2 for ‖θ∗‖2 ≤ B.

(b) the `1-norm f(θ) = ‖θ − θ∗‖1 for ‖θ∗‖1 ≤ B.

9. We consider the continuous exponentially weighted average forecaster (EWA) that
predicts

θt =

∫
θ∈Θ

θwt(θ)dµ(θ)∫
θ∈Θ

wt(θ)dµ(θ)
, where wt(θ) = exp

(
− η

t−1∑
s=1

fs(θ)

)
,

and where dµ is the uniform measure on Θ.

(a) Show that

WT
def
=

∫
Θ

wT (θ)dµ(θ) ≤ exp

(
−η

T∑
t=1

ft(θt)

)
.

(b) Let ε ∈ (0, 1) and θ∗ ∈ arg minθ∈Θ

∑T
t=1 ft(θ). Define Θε

def
=
{

(1 − ε)θ∗ +
εθ, θ ∈ Θ

}
. Show that for all t ≥ 1 and all θ ∈ Θε, we have

exp
(
− ηft(θ)

)
≥ (1− ε) exp

(
− ηft(θ∗)

)
.

(c) Using that µ(Θε) ≥ εdµ(Θ) (no proof needed), show that

WT ≥ µ(Θ)εd(1− ε)T exp

(
− η

T∑
t=1

ft
(
θ∗
))

.

(d) Conclude that the regret is upper-bounded as

RT
def
=

T∑
t=1

ft(θt)−
T∑
t=1

ft(θ
∗) .

d

η
log T .

(e) How would you implement this algorithm in practice and what is its complex-
ity?
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