PREDICTIONS OF INDIVIDUAL SEQUENCES

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes (with any content) is allowed. Answers can be written in French or English.

The notation \leq can be used to say "less or equal than, up to some universal (additive or multiplicative) constant".

Part 1. Appetizers

Let \mathcal{A} be any online learning algorithm.

- 1. Explain the difference between the pseudo regret and the regret of \mathcal{A} .
- 2. Assume that the losses are in [-1, 1] and that for all $\delta > 0$ the regret of \mathcal{A} is upper-bounded as $R_T(\mathcal{A}) \leq C \log(1/\delta)$, for some C > 0 with probability at least 1δ . Prove the upper-bound on the expected regret $\mathbb{E}[R_T(\mathcal{A})] \leq C$.
- 3. (Doubling trick) Assume that \mathcal{A} provides, for any known beforehand fixed horizon T, a regret bound $R_T(\mathcal{A}) \leq CT^{\alpha}$ for some C > 0 and $\alpha > 0$.
 - (a) Explain how to convert it into an algorithm \mathcal{A}_{∞} which runs forever without knowing the horizon.
 - (b) Prove the corresponding regret bound.
 - (c) What regret bound do you get if $R_T(\mathcal{A}) = C \log T$?
- 4. (Linear regret) Assume that the algorithm \mathcal{A} is determinist.
 - (a) If \mathcal{A} is asked to provide at each round $t \geq 1$, an action $\theta_t \in \{1, \ldots, K\}$. Prove that there exists a sequence of loss functions $f_1, \ldots, f_T \in [0, 1]^K$ such that

$$R_T(\mathcal{A}) = \sum_{t=1}^T f_t(\theta_t) - \min_{k \in [K]} \sum_{t=1}^T f_t(k) \ge \left(1 - \frac{1}{K}\right) T.$$

(b) If \mathcal{A} is asked to provide at each round $t \geq 1$, an action $\theta_t \in \Delta_K = \{\theta \in [0,1]^K : \|\theta\|_1 = 1\}$. Prove that there exists a sequence of linear loss functions $g_1, \ldots, g_T \in [0,1]^K$ such that

$$\sum_{t=1}^{T} \theta_t^\top g_t - \sum_{t=1}^{T} \min_{\theta \in [K]} \theta^\top g_t \ge \left(1 - \frac{1}{K}\right) T.$$

5. Show why Online Mirrored Descent with negative entropy $R(x) = \sum_{i=1}^{K} x(i) \log x(i)$ as regularization is equivalent to Exponential Gradient (Exponentially Weighted Average (EWA) forecaster with gradient trick).

Part 2. Successive elimination for stochastic bandits

For $t = 1,, T$ – First, pull the two arms al- ternatively until there exists	Initialization: all arms in $[K]$ are active. For $t = 1,, T$
$k, k' \in \{1, 2\}$ such that	– pull all active arms alterna-
$UCB_t(k) < LCB_t(k')$	tively; – if there exists k and $k' \in [K]$
- Then, abandon arm k and	such that
play arm k' for the remaining	$UCB_t(k) < LCB_t(k')$
rounds.	deactivate arm k .
(a) $K = 2$	(b) $K > 2$

Algorithm 1: Successive elimination algorithm

Setting and notations. We assume there are K unknown distributions $\nu(k)$ over [0,1] with mean $\mu(k)$ for $k \in [K]$. At each time $t \geq 1$, the player chooses some action $k_t \in [K]$, the environment draws the reward $X_t(k_t) \sim \nu(k_t)$ and the player observes $X_t(k_t)$. We define $N_t(k) \stackrel{\text{def}}{=} \sum_{s=1}^t \mathbb{1}_{\{k_t=k\}}$ the number of times arm k was played before t and $\hat{\mu}_t(k) \stackrel{\text{def}}{=} (1/N_t(k)) \sum_{s=1}^t X_t(k) \mathbb{1}_{\{k=k_t\}}$ the empirical mean of arm k at time t. We call k^* the optimal arm, i.e., $k^* \in \arg \max_{k \in [K]} \mu(k)$.

6. We consider the 2-armed stochastic bandit framework, i.e. K = 2 with Alg. 1(a).

(a) Prove that for $r_t(k) = \sqrt{2(\log T)/N_t(k)}$, we have

$$\mathbb{P}\Big(\forall t \in [T], \ \forall k \in [K], \quad \left|\widehat{\mu}_t(k) - \mu(k)\right| \le r_t(k)\Big) \le 1 - \frac{2}{T^2}.$$

(b) We define $UCB_t(k) \stackrel{\text{def}}{=} \widehat{\mu}_t(k) + r_t(k)$ and $LCB_t(k) \stackrel{\text{def}}{=} \widehat{\mu}_t(k) - r_t(k)$. Prove that

$$\bar{R}_T = \mathbb{E}\left[\max_{k \in [K]} \sum_{t=1}^T \mu(k) - \sum_{t=1}^T X_t(k_t)\right] \lesssim \sqrt{T \log T}.$$

- 7. We now consider the general case $K \ge 2$ (Alg. 1(b)). To ease the analysis, in the sequel, we consider the clean (high probability) event such that for all k, t, $\mu(k) \in [LCB_t(k), UCB_t(k)]$.
 - (a) Prove that for all suboptimal arms $k \in [K]$

$$\Delta(k) \stackrel{\text{def}}{=} \mu(k^*) - \mu(k) \lesssim r_T(k) \lesssim \sqrt{\frac{\log T}{N_T(k)}} \,.$$

In other words, a bad arm cannot be played too many times.

- (b) Prove that therefore the pseudo regret satisfies $\bar{R}_T \lesssim \log T \sum_{k=1}^K \sqrt{N_T(k)}$.
- (c) Conclude that $\bar{R}_T \lesssim \sqrt{KT \log T}$.
- (d) Using the result of question 7a), show that we also have

$$\bar{R}_T \lesssim \sum_{k:\Delta(k)>0} \frac{\log T}{\Delta(k)}$$

Part 3. Continuous Exponential Weights

Setting and notation. Let $\Theta \subseteq \mathbb{R}^d$ be a compact convex decision space and $\eta > 0$. A function $f: \Theta \mapsto \mathbb{R}$ is said η -exp-concave if $\theta \mapsto e^{-\eta f(\theta)}$ is concave over Θ . We consider the following setting of online prediction. At each round $t \geq 1$, the learner chooses $\theta_t \in \mathcal{X}$, then the environment chooses a continuous η -exp-concave loss $f_t: \Theta \to [0, 1]$ and reveals it to the learner.

8. Determine the set of η (if any) for which the following functions are η -exp-concave.

- (a) the squared loss $f(\theta) = \|\theta \theta^*\|_2^2$ for $\|\theta^*\|_2 \le B$.
- (b) the ℓ_1 -norm $f(\theta) = \|\theta \theta^*\|_1$ for $\|\theta^*\|_1 \le B$.
- 9. We consider the continuous exponentially weighted average forecaster (EWA) that predicts

$$\theta_t = \frac{\int_{\theta \in \Theta} \theta w_t(\theta) d\mu(\theta)}{\int_{\theta \in \Theta} w_t(\theta) d\mu(\theta)}, \quad \text{where} \quad w_t(\theta) = \exp\left(-\eta \sum_{s=1}^{t-1} f_s(\theta)\right),$$

and where $d\mu$ is the uniform measure on Θ .

(a) Show that

$$W_T \stackrel{\text{def}}{=} \int_{\Theta} w_T(\theta) d\mu(\theta) \le \exp\left(-\eta \sum_{t=1}^T f_t(\theta_t)\right).$$

(b) Let $\varepsilon \in (0,1)$ and $\theta^* \in \arg\min_{\theta \in \Theta} \sum_{t=1}^T f_t(\theta)$. Define $\Theta_{\varepsilon} \stackrel{\text{def}}{=} \{(1-\varepsilon)\theta^* + \varepsilon\theta, \ \theta \in \Theta\}$. Show that for all $t \ge 1$ and all $\theta \in \Theta_{\varepsilon}$, we have

$$\exp\left(-\eta f_t(\theta)\right) \ge (1-\varepsilon)\exp\left(-\eta f_t(\theta^*)\right).$$

(c) Using that $\mu(\Theta_{\varepsilon}) \geq \varepsilon^d \mu(\Theta)$ (no proof needed), show that

$$W_T \ge \mu(\Theta)\varepsilon^d (1-\varepsilon)^T \exp\left(-\eta \sum_{t=1}^T f_t(\theta^*)\right).$$

(d) Conclude that the regret is upper-bounded as

$$R_T \stackrel{\text{def}}{=} \sum_{t=1}^T f_t(\theta_t) - \sum_{t=1}^T f_t(\theta^*) \lesssim \frac{d}{\eta} \log T.$$

(e) How would you implement this algorithm in practice and what is its complexity?