MVA 2019-20 Pierre Gaillard

PREDICTIONS OF INDIVIDUAL
SEQUENCES

FINAL EXAMINATION

The duration of the exam is 2 hours. A single two-sided sheet of handwritten notes
(with any content) is allowed. Answers can be written in French or English.

The notation < can be used to say "less or equal than, up to some universal (additive
or multiplicative) constant".

Part 1. Appetizers

Let A be any online learning algorithm.

1. Explain the difference between the pseudo regret and the regret of A.

2. Assume that the losses are in [—1,1] and that for all § > 0 the regret of A is
upper-bounded as Rr(A) < C'log(1/4d), for some C' > 0 with probability at least
1 — 0. Prove the upper-bound on the expected regret E[Rp(A)] < C.

3. (Doubling trick) Assume that A provides, for any known beforehand fixed horizon
T, a regret bound Ry (A) < CT* for some C > 0 and o > 0.

(a) Explain how to convert it into an algorithm A, which runs forever without
knowing the horizon.

(b) Prove the corresponding regret bound.
(¢) What regret bound do you get if Ry(A) = ClogT?

4. (Linear regret) Assume that the algorithm A is determinist.

(a) If A is asked to provide at each round ¢ > 1, an action 0, € {1,..., K'}. Prove
that there exists a sequence of loss functions fi, ..., fr € [0,1]% such that

Re(A) = 3 00 — win 3™ 5k > (1 )7
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(b) If A is asked to provide at each round ¢ > 1, an action 6, € A = {6 €
[0,1]% : ||0||; = 1}. Prove that there exists a sequence of linear loss functions
g1, -, 97 €[0,1]% such that

T T 1
0" g, — inf'g > (1——)T.
; t 9t ;91161[1[1{1] gt = K

5. Show why Online Mirrored Descent with negative entropy R(x) = Zfil x(i) log x(7)
as regularization is equivalent to Exponential Gradient (Exponentially Weighted
Average (EWA) forecaster with gradient trick).

Part 2. Successive elimination for stochastic bandits

For f — 1 T Initialization: all arms in [K] are
— First, pull the two arms al- active.
ternatively until there exists Fort=1,....T
k,k" € {1,2} such that — pull all active arms alterna-
, tively;
UCB(k) < LOB(K) — if there exists k and k' € [K]
— Then, abandon arm k and such that
play arm &’ for the remaining UCB,(k) < LCB,(K)
rounds. )
(a) K =2 deactivate arm k.
a fry

(b) K > 2

Algorithm 1: Successive elimination algorithm

Setting and notations. We assume there are K unknown distributions v(k) over [0, 1]
with mean u(k) for £ € [K]. At each time ¢ > 1, the player chooses some action
ki € [K], the environment draws the reward X;(k;) ~ v(k;) and the player observes
X;(k;). We define N;(k) = >°'_ 13,4 the number of times arm k was played before
t and (k) = (1/Ni(k))S2'_, Xi(k)1(s=t,; the empirical mean of arm k at time ¢.
We call k* the optimal arm, i.e., k* € arg maxy¢x) p(k).

6. We consider the 2-armed stochastic bandit framework, i.e. K =2 with Alg. 1(a).
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(a) Prove that for (k) = \/2(log T)/N(k), we have
P(¥t € [T], vk € (K], [u(k) - u(k)| < (k) <1- .

(b) We define UCB,(k) = fiy(k) + ry(k) and LOBy(k) = [i,(k) — r¢(k). Prove

that
T

max > (k) — th(k;t)] </TlogT.

ke[K] Pl
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7. We now consider the general case K > 2 (Alg. 1(b)). To ease the analysis, in
the sequel, we consider the clean (high probability) event such that for all k,¢,
pu(k) € [LCBy(k), UCB,(k)].

(a) Prove that for all suboptimal arms k € [K]

logT'
Nr(k)

In other words, a bad arm cannot be played too many times.

(b) Prove that therefore the pseudo regret satisfies Ry < log TS r, /Np(k) .
(¢) Conclude that Ry < /KT logT.

(d) Using the result of question 7a), show that we also have

_ log T
Ry < E :
e A(k)
k:A(k)>0

Part 3. Continuous Exponential Weights

Setting and notation. Let © C R? be a compact convex decision space and n > 0. A
function f : © — R is said n-exp-concave if 6 > e~(?) is concave over ©. We consider
the following setting of online prediction. At each round t > 1, the learner chooses
0, € X, then the environment chooses a continuous n-exp-concave loss f; : © — [0, 1]
and reveals it to the learner.

8. Determine the set of n (if any) for which the following functions are n-exp-concave.
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(a) the squared loss f(6) = ||§ — 6*||3 for ||0*||2 < B.
(b) the ¢;-norm f(0) = |60 — 0*||, for ||6*]|: < B.

9. We consider the continuous exponentially weighted average forecaster (EWA) that
predicts

= faee 0wt(€)du(9) wihere w = X
e w0 e (- ”Zfs )

and where du is the uniform measure on O.

(a) Show that
[ d_ef 0)d S ex ’t Qt .

(b) Let € € (0,1) and 6* € argming.g >.,_, fi(#). Define ©, = {(1—e)o" +
ef, 0 € @}. Show that for all ¢ > 1 and all # € ©., we have

exp (—nfi(0)) > (1 —e)exp (—nfi(67)).

(c) Using that u(0.) > e%u(0) (no proof needed), show that
Wr > pu(©)e?(1 — )" exp ( Uth 9* )

(d) Conclude that the regret is upper-bounded as

T

T
Rr = Z Z logT

t=1

(e) How would you implement this algorithm in practice and what is its complex-
ity?
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