Lecture \#4: Continuous and linear bandits
In many applications, the agent an observe a context c_{r} fist (eg user infoumdion in the case of online recommendation)
Bandits with cor binuuer of arms
Before that, let us consider the problem of continuous bandits
Setting (continuous band ito)
At each time otep $t=1, \ldots, T$:

- the genet pulls an arm $a \in A \subset[0,1]^{d}$

Goal: minimise regret $R_{T}=T \mu^{+}-\sum_{r=1}^{T} \mu(a r) \quad$ when $\mu^{*}=$ ate $\mu_{1} \mu^{(a)}$
W. that any arempthion on $\mu \circ A$, we cannot do anything.

Otherwise, for $A=[0,1]$ and any algoiltern, we car close x st.

$$
F r \in \mathbb{N}, \quad \mathbb{P}_{\mu=0}\left(a_{r}=x\right)=0
$$

Then for $\mu(6)=\mathbb{1}_{a=x}$, the same a agoithen would behave as if $\mu=0$ and never pull x, so that to eneget is $R_{T}=T$.

Continuity is actually enough to control the reget (ie having $\mathbb{E}\left[R_{I}\right]=0(T)$)
To get precise bounds, we will consader a stronges assemption on μ
μ is β - Höldn if there exiots $c>0$ o.t $\forall a, a^{\prime} \in \mathcal{A}\left|\mu(a)-\mu\left(a^{\prime}\right)\right| \leqslant c\left\|a-a^{\prime}\right\|^{\beta}$
(mb) Alge: Binning UCB
Input: $\varepsilon>0$
Let K be an ε-colving of minimal condinad of A
Pull each ams in K once
Then for lany $r \geqslant|\mathrm{k}|$
win VCB on theser ofoums K
pull $a_{r} \underset{6 \in K}{\text { Gargmax }} \hat{\mu}_{k}(r \cdot 1)+2 \sqrt{\frac{2 \ln (r)}{N_{k}(r-1)}}$ (dipfoent coutarat becam we tave 1-rab-Gumsion nevads)

Theorem
Let $\beta>0$ and $\varepsilon>0$. Astume that $\mu u \beta$.Hodden and $A \subset[0,1]^{d}$.
Then rumning buinning UCB with puthe yeide the vegut:

$$
\mathbb{E}\left[R_{I}\right] \leqslant c\left(T \varepsilon^{\beta}+\sqrt{\frac{T \ln T}{\varepsilon^{\top}}}\right) \quad \text { fo some univeras cond out } c>0 \text {. }
$$

Toking E of ordn $\left(\frac{\ln T}{T}\right)^{\frac{1}{2 \beta+1}}$ yields a negut $E\left[R T=O\left(T^{\frac{1+d}{2 p+\alpha}} \ln T\right)^{\frac{\beta}{1 p+1}}\right)$

Proof:

$$
\begin{aligned}
R_{T} & =\sum_{r=1}^{T} \mu^{*}-\mu_{a r} \\
& =\sum_{r=1}^{T}\left(\mu^{*}-\max _{a f K} \mu_{(a)}\right)+\sum_{r=1}^{T} \operatorname{mix}_{a \in K} \mu_{(a)}-\mu_{a r} .
\end{aligned}
$$

$\leqslant \overbrace{c \varepsilon^{\beta}}$ by $\quad \underbrace{}_{\text {ngut of }} U C B$ sun on K
Hilder assurption
rofa $K=\operatorname{cand}(K), \mathbb{E}\left[R_{I}\right] \leqslant c \varepsilon^{\beta}+\underbrace{c \sqrt{K T \ln (T)}}_{\text {diotaibation fue bound of } U C B}$
By mammimisation of cordinat, a cassical covvering number bound yields $K_{2} \leq \varepsilon^{-d}$, which concludesed
contextual bandits
Mativation
Setting 1 (contextrual bandito)
For each round $r=1, \ldots, T$:

- ogent obterves context $C_{r} \in e$ (aubitionily chosen by matere)
- agent chooges action $a_{r} \in[K]$, depending on C_{r} and post dobervations.
- agent dosenves and gets revoand Y_{F}
where $y_{r}=n\left(a_{r}, c_{r}\right)+\eta_{r}$

$n:[K] \times C \rightarrow \mathbb{R}$ is called the veward fanction \mathcal{E} object rocotimante
(prund)-reget defined asi $R_{T}=\sum_{r=1}^{T}\left\{\max _{k \in C K} \pi\left(k, C_{T}\right)-\Omega\left(a_{r}, C_{F}\right)\right\}$

Without any assumption on r, independent bandit games for each context c '

- Fist poosibibily, r is "regular" (eeg. Lipochitg on Holder)

In that case, we can again run a binning vision of UCB to discretise the context set (instiod of action set)

Binning UCB (contextual)
Input: $\quad \varepsilon>0$
Let X be an ε-corvine of muminal cardinal of C
For each time step. $\vdash \geqslant 1$:

- observe the context $c r$
- let $B \in X$ a bell containing $C_{T}: c_{r} \in X$
- pull the arm ar following the VCB algatitm on the bin B, ie with

Theorem:
Let $\beta>0$ and $\varepsilon>0$. Assur that $x \mapsto \mu(b, x)$ i β-Holden for any $k \in[K]$ and $e \subset[0,1]^{d}$ The negus of (contextual) binning UCB is then bounded as:

$$
\mathbb{E}\left[R_{T}\right] \leqslant c\left(T \varepsilon^{\beta}+\sqrt{\frac{k T \ln T}{\varepsilon^{\alpha}}}\right)
$$

choosing ε of oren $\left(\frac{K \log T}{T}\right)^{\frac{1}{2 p+d}}$, we get $\mathbb{E}\left[R_{T}\right]=O\left(T \frac{\beta+1}{4 \beta+d}(K \ln T)^{\frac{\beta / p+d}{}}\right)$

Proof is notaddicet as the conticulaus bandits care: UCB does not act with ied variables hew, but

(eft me rain)

Remanks:

- In alt the periases algos, we ar neplece VCB by Moss toget iod of the log Temes
- Instance dependent bounds? In the above results, we weed the detitibation free bound of UCB. Con ve get nomething better, dipending on the regna birty level of μ ?
$Y_{e s}$ with the α-magin assemptions for iid contests c_{r} and all $\delta \in(0,1)$

$$
\mathbb{P}\left(\min _{k, \Delta\left(h c_{r}\right)>0} \Delta(h, c r)<\delta\right) \leqslant c \delta^{\alpha} ; \quad \text { wher } \Delta(h, c)=\max _{e \alpha \mu(l, d)-\mu(l, c)}
$$

Theoum
 Thenthe regit of (contertual) bieming UCB is then bounded as:

$$
\mathbb{E}\left[R_{T}\right] \leqslant c T^{\frac{\beta(-1-)+1}{2 p+1}}(K \ln T)^{\frac{\beta(1+1+1)}{\mu_{T}+\tau}}
$$

for on optaneid E
the poof in whicate.

Linear bandils

Another passable assumption it that r is linear with respect r_{0} a known feative map $\psi:[K] \times e \rightarrow \mathbb{R}^{d}$ and a parameter $\frac{\theta^{2} \in \mathbb{R}^{d}}{V_{\text {aetrinve }}}$ mech that

$$
n(k, c)=\left\langle\theta^{*}, \psi(a, c)\right\rangle \quad \forall R, c .
$$

Thin is equivalent to the following setting, with $A_{r}=\left\{\psi\left(k, C_{r}\right) \mid \in \in[K]\right\}$:
Setting 2 (linear bandits)
For each round $t=1, \cdots, T$:

- ogent observes decision aet $A_{r} \subset \mathbb{R}^{d}$
- agent chooses action $a_{t} \in A_{r}$
- agent deserves and gets revoud Y_{F} where $y_{F}=\left\langle\theta^{*}, a_{+}\right\rangle+\eta_{r}$ same def n of nugget

Particular cases:
- $A_{r}=\left\{e_{1}, \ldots, e_{d}\right\} \rightarrow$ classical malt -armed bandits with d corms and $\mu_{a}=\theta_{k}^{\sigma}$
- Ar $\subset(0,1)^{d} \rightarrow$ combinatorial bandits.
we want to build an adaptation of UCB foo linear bandits, called
$\operatorname{Lin} U C B$
minn $\min ^{\text {min }}$ - build confidence regions C_{t} such that $\theta \in C_{t}$ with high probability
- build confidence bounds for the arm mans $U_{a}(t)=\max \langle a, \theta\rangle$
- be optimistic: pull $a_{r} \in \underset{a \in A_{r}}{ } U_{a}(r)$

Before the corfidence set, what is the estumate of θ θ ? (ic imprical)
Regularised least-aqnares estimator:

$$
\hat{\theta}_{1}=\operatorname{argmin}_{\theta \in \mathbb{R}^{d}} \sum_{\Delta=1}^{t}\left(y_{\Delta}-\left\langle\theta, a_{0}\right\rangle\right)^{2}+\lambda\|\theta\|_{2}^{2}
$$

$\lambda \geqslant 0$ is the pendly forctor (a regnaination parametu)
$\lambda>0$ enavues uriqueness of the miviunser
we can indeed resily heck that:

$$
\hat{\theta}_{r}=V_{t}^{-1} \sum_{s=1}^{t} a_{s} Y_{s} \quad \text { where } V_{t}=\lambda I_{d}+\sum_{s=1}^{t} a_{s} a_{s}^{\top}
$$

Frony symanimic, pritive definito malmix $M \in \mathbb{R}^{\text {ded }}$ and vector $u \in \mathbb{R}^{d}$, we denote

$$
\|u\|_{M}^{2}:=\left(u^{\top} M u\right)
$$

Thecoer (linear bandits concentration)

$$
\left\|\hat{\theta}_{r}-\theta^{*}\right\|_{V_{t}} \leqslant \sqrt{\lambda}\left\|\theta^{\circ}\right\|_{2}+\sqrt{2 \ln \left(\frac{1}{g}\right)+\ln \left(1+\frac{t}{\lambda \lambda}\right)}
$$

The poof relies on the following concentration lemme
Lemma
Let $S_{r}=\sum_{s=1}^{t} Y_{s} a_{s}$

Fa any $\lambda>0, r \in \mathbb{N}$ and $\delta \in(0,1)$,

$$
\mathbb{P}\left(\left\|S_{H}\right\|_{V_{H}-1}^{2} \geqslant 2 \ln \left(\frac{1}{\delta}\right)+\ln \left(\frac{\operatorname{det}\left(V_{F}\right)}{\lambda^{d}}\right)\right) \leqslant \delta
$$

Proof of the theorem (based on lemma)
Note that $\hat{\theta}_{r}=V_{r}^{-1}\left(S_{r}+\sum_{0=1}^{1} a_{\theta} a_{0}^{\top} \theta^{\sigma}\right)$

$$
=V_{r}^{-1} S_{r}+V_{r}^{-1}\left(V_{r}-\lambda I_{d}\right) \theta^{*}
$$

So

$$
\leqslant \quad \lambda^{-\frac{1}{2}}\left\|\theta^{*}\right\|_{2}
$$

It remains V_{0} show the $\frac{\operatorname{dec}\left(V_{F}\right)}{\lambda^{\lambda}} \leqslant\left(1+\frac{T}{\lambda}\right)^{\lambda}$, ie $\operatorname{dec}\left(V_{V}\right) \leqslant(\lambda+T)^{\lambda}$.

$$
\begin{aligned}
& \left\|\hat{\theta}_{r}-\theta^{0}\right\|_{V_{r}}=\left\|V_{r}^{-1} S_{r}-\lambda V_{r}^{-1} \theta^{0}\right\|_{V_{r}} \\
& \leqslant\left\|V_{t}^{2} S_{t}\right\|_{V_{t}}+\lambda\left\|V_{r}^{-1} \theta^{-}\right\|_{V_{r}} \\
& =\left\|s_{r}\right\|_{V_{F}}+\lambda \underbrace{\left\|\theta^{0}\right\|_{H_{r}}}
\end{aligned}
$$

Proof of the Corona
Fa any $x \in \mathbb{R}^{d}$, define $M_{r}(x)=\exp \left(\left\langle x, S_{r}\right\rangle-\frac{1}{2}\|x\|_{V_{r-\lambda I_{1}}}^{2}\right)$

$$
\begin{aligned}
& \mathbb{E}\left[\Pi_{r}(r)\right] \leqslant M_{0}(x)=1 \\
& r \rightarrow r+1 . \quad M_{r+1}(x)=\exp _{j}\left(\left\langle x, S_{r+1}\right\rangle-\frac{1}{2}\left(x^{\top}\left(V_{r+1}-\lambda I\right)_{x}\right) \quad V_{r+1}=V_{r}+a_{r+1} a_{r+1}^{\top}\right. \\
&=M_{r}(x) \cdot \exp \left(\left\langle x, a_{r+1}\right\rangle \eta_{r+1}-\frac{1}{2}\left\langle x, a_{r+1}\right\rangle^{2}\right) . \\
& \mathbb{E}\left[M_{r+1}(x) \mid F_{r}\right] \leqslant \Pi_{r}(x) \quad\left(\eta_{r+1} \text { is } 1 \text { sab } \text { - Caunsion }\right) .
\end{aligned}
$$

2) $\operatorname{let} v=N\left(0, \lambda^{-1} I_{d}\right)$.

$$
\bar{T}_{r}=\int \Pi_{r}(x) d v(x) \quad \begin{aligned}
\text { is } d v \text { aspumatrunghlis }
\end{aligned}
$$

$$
\left.\bar{M}_{r}=\frac{1}{\sqrt{(2 \pi)^{d} \lambda^{-\alpha}}} \int_{\mathbb{R}^{1}} \exp ^{\left\langle\left\langle x, S_{1}\right\rangle \cdot \frac{1}{2}\|x\|_{V_{1} \cdot \lambda I}^{2}-\frac{1}{2}\|x\|_{\lambda \pm}^{2}\right.}\right) d x
$$

$$
\begin{aligned}
& =x^{\top} S_{r}-\frac{1}{2} x^{\top} V_{r} x \\
& =-\frac{1}{2}\left(x \cdot V_{r}^{-1} S_{r}\right)^{\top} V_{r}\left(x-V_{r}^{-1} S_{r}\right)+\frac{1}{2} S_{r}^{\top} V_{r}^{-1} S_{r}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2}\left\|x \cdot V_{F}^{1} S_{t}\right\|_{V_{F}}^{2}+\frac{1}{2}\left\|S_{r}\right\|_{V_{t}^{-2}}^{2} \\
\overline{M_{r}} & =\exp \left(\frac{1}{2}\left\|S_{r}\right\|_{V_{r}}^{2}\right) \cdot\left(\frac{\lambda}{2 \pi}\right)^{d / 2} \int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\left\|x \cdot V_{r}^{1} S_{r}\right\|_{V_{r}}^{2}\right) d x
\end{aligned}
$$

upto escoling plf of $N\left(V_{r}^{-1} S_{r}, V_{r}\right)$

$$
=\exp \left(\frac{1}{2}\left\|S_{r}\right\|_{V_{r}^{-1}}^{2}\right) \frac{\delta^{d / 2}}{\sqrt{d_{2} t\left(V_{r}\right)}}
$$

$$
\left\|S_{r}\right\|_{V_{r}^{-1}}^{2}=2 \ln \left(\bar{M}_{r}\right)-\ln \left(\frac{\lambda^{d}}{\operatorname{den}\left(V_{r}\right)}\right)
$$

3)

$$
\begin{array}{r}
\mathbb{P}\left(\left\|S_{r}\right\|_{V_{r}^{-1}}^{2} \geqslant 2 \ln \left(\frac{1}{\delta}\right)+\ln \left(\frac{\operatorname{det}\left(v_{r}\right)}{\lambda^{d}}\right)\right)=\mathbb{P}\left(\ln \left(\bar{M}_{r}\right) \geqslant \ln \left(\frac{1}{\delta}\right)\right) \\
=\mathbb{P}\left(\bar{M}_{r} 3 \frac{1}{\delta}\right) \leqslant \mathbb{E}\left[\bar{M}_{r}\right] \delta \leqslant \delta .
\end{array}
$$

Algo $\frac{\operatorname{Lin} \cup C B_{1}}{r_{1}}$ suppon we knom w with $\left\|E^{*}\right\|_{2} \leqslant m$
Fr each + EIN
Ply $a_{r} \in$ agmax max $\left\langle\theta, a_{r}\right\rangle \mid$ can be computred efficiently for $a \in A_{r} \quad \partial \in e_{r-1}$ ane ruepe form of C_{r} andnice Ar.
with $\quad \hat{\theta}_{r}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{0=1}^{t}\left(y_{\Delta}-\left\langle\theta, a_{0}\right\rangle\right)^{2}+\lambda\|\theta\|_{2}^{2} \quad V_{r=} \lambda I+\sum_{i=1}^{r} a_{0} a_{0}^{T}$
and $e_{r}=\left\{\theta \in \mathbb{R}^{d}\left|\left\|\hat{\theta}_{r}-\theta\right\|_{V_{r}} \leqslant \sqrt{\lambda} m+\sqrt{4 \ln (r)+\ln \left(4+\frac{r}{d \lambda}\right)}\right|\right.$

Theorem:
If $\mid \theta^{\circ} \|_{2} \leqslant 1$ and forany t, $\operatorname{wax}_{a \in A t}\|a\|_{2} \leqslant 1$, then the roget of $\operatorname{Lin} U C B$ satriffies for any $\lambda>0$:

$$
\mathbb{E}[R T] \leqslant C_{\lambda} d \sqrt{T} \ln T
$$

whee c_{λ} is a contour that only depends on λ.
Comments:

- distribution free bound
- if Ar if finite, and the same fa estray t, we can get a bog (r) instance dependent bound: $\mathbb{E}\left[R_{I}\right] \leqslant c \sqrt{T \lambda \ln (T K)}$
- another possible inporement when $d \geqslant 1$ is to assume that θ° is mo- apace Then, we canget a negus of oren $\tilde{O}\left(\sqrt{d m_{0} T}\right)$

Poof:
Let us hound the instantaneous regutfust.

$$
n_{r}=\left\langle\theta^{\sigma}, A_{r}^{*} \cdot a_{r}\right\rangle \quad \text { when } A_{r}^{r} \in \operatorname{agg}_{a A_{-}-} A_{r}\left\langle\theta^{\sigma}, a\right\rangle
$$

Define the good event

$$
\varepsilon_{r}=\left\{\theta^{*} \in C_{r-1} \mid\right.
$$

Thanks 6 our concentration theorem, $P\left(\neg \varepsilon_{r}\right) \leqslant \frac{1}{(t-1)^{2}}$

$$
\begin{aligned}
S_{0} \mathbb{E}\left[r_{r}\right] & \leqslant 2 \times \mathbb{P}\left(\neg \varepsilon_{r}\right)+\mathbb{E}\left[\begin{array}{ll}
r_{r} & \left.\mathbb{1}_{\varepsilon_{r}}\right] \\
& \leqslant \frac{2}{\left((-1)^{2}\right.}+\mathbb{E}\left[\Omega_{r} \mathbb{1}_{\varepsilon_{r}}\right]
\end{array} .\right.
\end{aligned}
$$

$$
\text { if } \varepsilon_{r} \theta^{*} \in \varepsilon_{r-1}
$$

$$
\left\langle\theta^{*}, A_{r}^{*}\right\rangle \leqslant \max _{\theta \in e_{r-1}}\left\langle\theta, A_{r}^{*}\right\rangle
$$

$$
\leqslant \max _{\theta \in r_{r-1}}\left\langle\theta, a_{r}\right\rangle \quad \text { by def of } a_{r}
$$

$$
=\left\langle\tilde{\theta}_{r}, a_{r}\right\rangle \text { for nome } \tilde{\theta}_{r} \in e_{r, 1}
$$

Cauchy Sehway girs

$$
\begin{aligned}
& n_{r}=\left\langle\theta^{\theta}, A_{r}^{+} \cdot a_{r}\right\rangle \leqslant\left\langle\tilde{\theta}_{r}-\theta^{*}, a_{r}\right) \leqslant\left\|\tilde{\theta}_{r} \cdot \theta^{*}\right\|_{V_{k=1}}\left\|a_{r}\right\|_{V_{F-1}^{-1}} \\
& 1\left\|a_{r}\right\|_{V_{r-1}^{-1}}\left(\left\|\hat{\theta}_{r} \cdot \hat{\theta}_{r-1}\right\|_{V_{r-1}}+\left\|\theta^{*} \cdot \hat{\theta}_{r-1}\right\|_{V_{r-1}}\right) \\
& \leqslant 2\left\|a_{r}\right\|_{V_{r-1}} \cdot\left(\sqrt{\left.\sqrt{\lambda}+\sqrt{4 \ln \left(r_{1}\right)+\ln \ln \left(1+\frac{T}{\lambda d}\right)}\right)}\right. \\
& \text { difine } \alpha_{r}=\max (?, 1)
\end{aligned}
$$

aloo by astumptiom, $\Omega_{r} \leqslant 2$, so

$$
\Omega_{r} \leqslant 2 \alpha_{r}\left(1 \wedge\left\|_{a_{r}}\right\|_{V_{r-1}^{-1}}\right) \quad\left(i f \varepsilon_{r} h_{o} d s\right)
$$

overenll

$$
R_{T} \leqslant \sum_{r=i}^{T} \mathbb{E}\left[\Omega_{r} 1_{C_{r}}\right]+\sum_{r=1}^{T}\left(\frac{1}{(r-1)^{2}} \wedge 1\right)
$$

$$
\begin{aligned}
& \leqslant 2 \sum_{r=2}^{T} \alpha_{r}\left(1 \wedge\left\|a_{r}\right\|_{V_{r-1}^{-1}}^{-1}\right)+c \\
& \leqslant 2 \sqrt{\sum_{r=1}^{T} \alpha_{r}^{2}} \sqrt{\sum_{r=1}^{T}\left(1 \wedge\left\|a_{r}\right\|_{V_{r-1}^{2}}^{2}\right)}+c \\
& \leqslant c\rangle \sqrt{\sum_{r=1}^{T} d \ln (T)} \sqrt{\sum_{r=1}^{T}\left(1 \wedge\left\|_{r}\right\|_{V_{r-1}^{-1}}^{2}\right)}+c \\
& \leqslant c \sqrt{d T \ln (T)} \sqrt{\sum_{r=1}^{T}\left(1 \wedge\left\|_{r}\right\|_{V_{r-1}^{-1}}^{2}\right)}+c
\end{aligned}
$$

Bound on $\sum_{r=1}^{T}\left(1 \wedge\left\|_{r}\right\|_{V_{r-1}^{-1}}^{2}\right)$

$$
\begin{aligned}
& u \wedge 1 \leqslant 2 \ln (1+u) \\
& \text { 10 } \sum_{r=1}^{T}\left(1 \cap\left\|a_{r}\right\|_{V_{n-1}^{-1}}^{1}\right)
\end{aligned}
$$

Indeed, $V_{r}=V_{r-1}+a_{r} a_{r}^{\top}=V_{r-1}^{12}\left(I+V_{r-1}^{1 / 2} a_{r} a_{r}^{\top} V_{r-1}^{12}\right) V_{k-2}^{1 / 2}$

$$
\begin{aligned}
& \therefore \operatorname{det}\left(V_{r}\right)=\operatorname{det}\left(V_{r-1}\right) \cdot \operatorname{det}\left(I+V_{r-1}^{\text {1h2 }} a_{r} a_{r}^{\top} V_{r-1}^{1 / 2}\right) \\
& \underbrace{}_{y^{\top} \text { wound one marie }}
\end{aligned}
$$

It y^{\top} the ijaravalues: $\left(1+\|g\|^{2}, 1, \cdots, 1\right)$

$$
\operatorname{det}\left(V_{r}\right)=\operatorname{det}\left(V_{V_{r-2}}\right) \cdot\left(1+\left\|V_{r-1}^{-11} a_{r}\right\|_{2}^{\prime}\right) \quad \text { ignarnern } y
$$

$$
=\operatorname{det}\left(V_{r-1}\right)\left(1+\left\|a_{r}\right\|_{V_{r-1}^{-1}}^{2}\right)
$$

so by induction $\ln \left(\operatorname{det}\left(V_{r}\right)\right)=\ln \left(\operatorname{det}\left(V_{0}\right)\right)+\sum_{t=1}^{r} \ln \left(1+\left\|_{a_{t}}\right\|_{W_{t-1}^{2}}^{2}\right)$
so $\sum_{r=1}^{T}\left(1+\left\|_{a_{r}}\right\|_{V_{r=2}^{2}}^{2}\right) \leqslant 2 \ln \left(\frac{\operatorname{det}\left(V_{T}\right)}{\operatorname{dir}\left(V_{0}\right)}\right)_{\lambda^{d}}$

$$
\begin{aligned}
& \leqslant 2 d \ln \left(1+\frac{T}{\lambda d}\right) \\
& \leqslant c_{\lambda} d \ln (T)
\end{aligned}
$$

In conclusion, gathering every thing we get.

$$
R_{T} \leqslant G d \ln T \sqrt{T}+c .
$$

