
MVA 2024-25 Pierre Gaillard, Rémy Degenne

Sequential Learning
Home Assignment

This homework should be uploaded by Friday, March 21, 2025 on the website

https://sequential-learning.github.io/

The password to upload is mva2025. The penalty scale is minus two points (on the final grade over 20 points) for
every day of delay. If the upload does not succeed (for some reason), send it by email to pierre.gaillard@inria.fr and
remy.degenne@inria.fr but only after you have tried the upload. It can be done alone or in groups of two students.
The report can be written in English or in French.

The homework should consist of a single jupyter notebook for Part 1, together with a single pdf report for
Part 2 (the code should not be returned for this part).

All questions require a proper mathematical justification or derivation (unless otherwise stated), but most ques-
tions can be answered concisely in just a few lines. No question should require lengthy or tedious derivations or
calculations.

Part 1. Portfolio selection

Complete the notebook

https://sequential-learning.github.io/docs/dm/notebook_portfolio.ipynb

Data is available at

https://sequential-learning.github.io/docs/dm/data_portfolio.zip

Part 2. Stochastic Best Arm Identification

In the best arm identification setting, an algorithm interacts with the environment in the standard bandit way: at
each time, it selects an arm, then observes the corresponding reward. The goal of the algorithm is to find the arm
with highest mean, as quickly as possible.

Each arm k ∈ [K] has a reward distribution νk with mean µk. There is a unique best arm k∗ = argmaxk µk.
At each round t = 1, . . . , τ

– The player chooses an arm kt ∈ [K],
– The player observes a reward Xkt

t ∼ νkt , independent of all other rewards.
At the stopping time τ , the algorithm recommends an arm k̂ ∈ [K]

Setting 1: Best arm identification

A good algorithm should make few mistakes and stop quickly. With the notations of Figure 1, the probability of
mistake of the algorithm on problem ν is Pν(k̂ ̸= k∗). The possibly random time at which it stops and returns an
answer is τ .

https://sequential-learning.github.io/
https://sequential-learning.github.io/docs/dm/notebook_portfolio.ipynb
https://sequential-learning.github.io/docs/dm/data_portfolio.zip
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Notations: Nk
t =

∑t
s=1 I{ks = k} is the number of times arm k was sampled up to time t. µ̂t,k = 1

Nk
t

∑t
s=1 I{ks =

k}Xks
s is the empirical mean of arm k.

Fixed Budget In fixed budget best arm identification, we are given a time T and set τ = T . That is, the
algorithm can sample a total number of T arms (T known in advance), then must stop and return an answer. We
are interested in algorithms with low probability of mistake.
We suppose that all the arm distributions are sub-Gaussian with constant 1.

1. Uniform sampling. The uniform sampling algorithm pulls all arms T/K times (we suppose that T is a multiple
of K).

(a) Prove that the probability of error of uniform sampling is at most 2
∑K

k=2 exp(−
T
K

∆2
k
8 ), where ∆k =

µk∗ − µk.

Algorithm 1: Successive rejects
Input: budget T , number of arms K.
Let A1 = {1, . . . ,K}, log(K) = 1

2 +
∑K

k=2
1
k , n0 = 0 and for j ∈ {1, . . . ,K − 1},

nj =

⌈
1

log(K)

T −K

K + 1− j

⌉
.

for each phase j = 1, 2, . . . ,K − 1 do
For each i ∈ Aj , select arm i during nj − nj−1 rounds.
Let Aj+1 = Aj \ argmink∈Aj

X̂k,nj
, where X̂k,nj

is the empirical mean of arm k after nj observations.
(we only remove one element from Aj ; if there is a tie, select randomly the arm to dismiss among the
worst arms).

end

2. The Successive Rejects algorithm is described in Algorithm 1. In each phase, it samples all arms uniformly,
and at the end of a phase it discards the worse arm.

(a) Give a bound on the probability that the best arm is discarded at the end of the first phase.

(b) Let B = I{k̂ ̸= k∗} be the Bernoulli random variable with value 1 if the algorithm makes a mistake and
0 otherwise. Its expectation on the bandit problem ν is Pν(k̂ ̸= k∗). Suppose that we run n parallel
experiments, and that in each experiment i ∈ [n] we run successive rejects on the same bandit ν and
compute the corresponding Bi = I{k̂ ̸= k∗}. Give a confidence interval for Pν(k̂ ̸= k∗).

(c) Implement successive rejects and uniform sampling. Plot the probability of error of both algorithms for
K = 20 Bernoulli arms with µ1 = 0.6 and µk = 0.5 for k ≥ 2, for T ∈ {100, 500, 2000}. Plot confidence
intervals and make sure to use enough experiments to get intervals with smaller width than the error
probability.

Fixed Confidence In fixed confidence best arm identification, we consider only δ-correct algorithms, which
satisfy Pν(k̂ ̸= k∗) ≤ δ for all tuples of distributions in our model. We are then looking for such algorithms with
minimal expected stopping time Eν [τ ].
All arm distributions in this section will be Gaussian with variance 1. All experiments will use 10 such arms, with
means (0.5, 0.6, 0.5, 0.4, . . . , 0.4). All experiments will use δ = 0.01.
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Stopping rule. Let ∗̂t = argmaxk∈[K] µ̂t,k. All algorithms will use the same stopping rule: stop when

inf
k∈[K]\{∗̂t}

1

2

(µ̂t,∗̂t − µ̂t,k)
2

1

N
∗̂t
t

+ 1
Nk

t

> log
1

δ
+ 3 log(1 + log t) .

τ is the first time such that this condition is satisfied. This is a heuristic approximation of the GLRT stopping rule
seen in the course (the quantity on the left is equal to infλ:∗λ ̸=∗̂t

∑K
k=1N

k
t
1
2(µ̂t,k − λk)

2).

1. In order to get a sub-linear regret, a regret minimization algorithms has to sample mostly the best arm. It
could thus be transformed into a best arm identification algorithm.

(a) Implement the UCB algorithm for regret minimization, which samples the arm

kt = argmax µ̂t−1,k +

√
2 log t
Nk

t−1
. Plot the mean over 100 experiments of the regret of UCB on the Gaussian

bandit problem described above, for t from 1 to 10000.

(b) Implement a best arm identification algorithm that samples like UCB, stops according to the rule presented
above, and returns the most played arm. Implement another algorithm that samples all arms uniformly,
stops according to the rule presented above, and returns the arm with highest empirical mean. On a box
plot, compare the stopping times of both algorithms.

2. Regret minimization algorithms don’t explore enough to be good identification methods. We can modify them
to explore more: this is the idea of Top-Two algorithms. A Top-Two algorithm computes at each time t a
leader Bt ∈ [K] and a challenger Ct ∈ [K] \ {Bt}, and then with probability β ∈ (0, 1) it samples the leader
(kt = Bt), and it samples the challenger with probability 1−β. It stops according to the rule presented above,
and recommends the arm with highest empirical mean. We will use β = 1/2.

(a) Implement the TTUCB algorithm: its leader is the UCB arm Bt = argmax µ̂t−1,k +

√
2 log t
Nk

t−1
and its

challenger is the arm for which it is hardest to say that it is worse, Ct = argmink ̸=Bt
1
2

(µ̂t,Bt−µ̂t,k)
2

1

N
Bt
t

+ 1

Nk
t

.

(b) We added an exploration mechanism, the challenger, and it is possible that using UCB for the leader is not
necessary anymore: we could simply select the empirical best arm, without the exploration bonus of UCB.
Implement the so-called EB-TC algorithm which uses Bt = argmax µ̂t−1,k and Ct = argmink ̸=Bt

1
2

(µ̂t,Bt−µ̂t,k)
2

1

N
Bt
t

+ 1

Nk
t

.

(c) On a box plot, compare the stopping times of all 4 algorithms (UCB, uniform, TTUCB and EB-TC) and
comment the results.

3. (Bonus question) Thompson Sampling is another regret minimization algorithm. Implement a Top Two algo-
rithm which uses Thompson Sampling. Give a pseudo-code of your algorithm. Compare that algorithm to the
others on various bandit problems.
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